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GENERAL TNTRODUCTION 

General Background and Objectives 

In this dissertation, we examine how lot-size decision makers and 

electric power utilities determine critical economic quantities (e.g., the 

order quantities for lot-size decision makers and transmission service 

chargers for electric power utilities) so as to improve the economic 

efficiency of operations. Throughout this dissertation, the optimal 

policies are obtained through linear and nonlinear programming techniques. 

For each model, interesting managerial insights and economic implications 

are obtained and illustrative numerical examples are provided. 

For lot-size decision makers, we extend the traditional economic 

order quantity model by considering various aspects of model environments 

such as inventory/pricing policies and different performance criteria 

(profit maximization vs. return on investment maximization). By analyzing 

the optimal solutions derived in our models, several interesting 

managerial insights are obtained. On the other hand, for electric power 

utilities, we propose a two-stage trilateral brokerage system for electric 

power transactions by considering the costs and benefits to buyers, 

sellers, and intermediate transmission utilities. By employing economic 

analysis and linear and nonlinear programming techniques, we show that 

significant gains in economic efficiency (often measured in terms of cost 

saving) can be achieved. Details of background and motivation for our 
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study (first for the lot-size decision makers, then for the electric power 

utilities) are as follows. 

Keeping an inventory to meet potential demand in the future is 

prevalent in most businesses. Manufacturers, wholesalers, and retailers 

generally have a stock of goods on hand. How to determine the "inventory 

policies" (i.e., when and how much to order/produce as well as how much to 

charge per unit) becomes a critical issue for lot-size decision makers. A 

simple model representing production-inventory situation is given by the 

well-known traditional economic order quantity (EOQ) model (see e.g., 

Hillier and Lieberman, 1995). 

The traditional EOQ model determines the production- inventory system 

by considering only cost factors consisting of a fixed setup cost, a 

variable unit production cost, and an inventory holding cost. It should 

be pointed out, however, that the inventory policies of numerous 

businesses may depend on its relations to other business policies 

regarding pricing and sales. In this study, we attempt to integrate the 

policies of inventory and pricing/sales so as to maximize the decision 

maker's benefit. 

The optimal inventory policies under price changes, based on the 

classical economic order quantity (EOQ) models, have been extensively 

studied (see e.g., Goyal, Srinivasan, and Arcelus, 1991, Lev and Veiss, 

1990, Ardalan, 1988, 1991, 1994, and Aull-Hyde, 1992, etc.). In their 

papers, the wide range of industrial practices and applicability of price 

changes are discussed in details. Inventory policies under disposal 

options have also been studied to some extent (see e.g., Rosenfield, 1989, 
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Sethi, 1984, and Tersine and Toelle, 1984, etc.). 

The numerous studies of these topics in the literature reflect the 

relevance and importance of the topics to both academicians and 

practitioners. Also, it is intuitive that, given a temporary sale, a 

buyer may find it beneficial to place a special order at a reduced price 

and/or dispose some of his on-hand inventory at a salvage value because 

these transactions may result in reduced total cost for the inventory 

system. Up to now, however, there have been few analytical models that 

integrates inventory and disposal policies under temporary sales. Hence, 

it is highly desirable to construct and analyze quantitative models of 

inventory and disposal policies under temporary sales. 

First, we investigate the optimal inventory and disposal policies for 

a buyer who is just informed of a temporary sale by his supplier. It is 

shown how the buyer determines the optimal inventory and disposal 

quantities so as to exploit the temporary sale. 

This inventory model is extended by focusing on the period between 

the announcement and commencement of a sale. By analyzing the optimal 

solutions for this extended model, it is shown how the pre-announcement 

can be utilized to maximize cost saving. 

Next, we examine an inventory and investment in setup operations 

model under profit maximization and under return on investment 

maximization. From the optimality conditions, the optimal order quantity, 

investment level, and several interesting managerial insights are 

obtained. 

Finally, we consider a published multi-product EOQ model with 
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constraints, ajid examine its optimal inventory and pricing policies. We 

show that there are two critical errors, and provide correct design and 

analysis by re-formulating and re-solving the entire model. 

For electric power utilities, in the United States, they are 

currently facing a drastic transformation from traditional, regulated, 

and vertically integrated environments to de-regulated and competitive 

environments (see e.g., McCalley and Sheble, 1994). A primary motivation 

for this transformation is to improve the economic efficiency in the 

electric power industry. A critical research area where the electric 

power industry can improve the economic efficiency is that of power 

interchange in an interconnected power system. The power interchange may 

improve the economic efficiency because there exist some potential savings 

whenever the difference in incremental production costs among utilities is 

significant and some extra production capacities exist. 

In this dissertation, we propose a two-stage trilateral (buyer, 

seller, and intermediate transmission utility) brokerage system for power 

transactions. In the first stage, a linear programming model is proposed 

to match bids from potential buyers and sellers. In the second stage, 

hierarchical criteria (such as the number of intermediate transmission 

utilities involved) are employed to determine the transmission routes 

based on the transmission costs to the intermediate transmission 

utilities. 

Finally, we extend the two-stage trilateral brokerage system by 

allowing multiple bids from potential buyers and sellers, and by proposing 

a nonlinear programming model for transmission route selection. By 
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employing economic analysis at each stage, we show that significant gains 

in economic efficiency can be achieved. 

Dissertation Organization 

This dissertation is composed of six papers which may be suitable for 

publication. In particular, the first paper "OPTIMAL INVENTORY AND 

DISPOSAL POLICIES IN RESPONSE TO A SALE" is accepted and will appear in 

International Journal of Production Economics. The fourth paper "A 

MIJLTI-PRODUCT EOQ MODEL WITH PRICING CONSIDERATION -- T. C. E. CHENG'S 

MODEL REVISITED" appears in Computers and Industrial Engineering: in 

International Journal, Volume 26, Number 4, Page 787-794, 1994. The fifth 

paper "A TWO-STAGE BROKERAGE SYSTEMS FOR ELECTRIC POWER TRANSACTIONS" is 

presented at the Fourth Industrial Engineering Research Conference, 

Nashville, Tennessee, May 1995, and will appear in the Proceedings of the 

Fourth Industrial Engineering Research Conference. 

Also, the second paper "OPTIMAL INVENTORY POLICIES IN RESPONSE TO A 

PRE-ANNOUNCED SALE" is to be submitted to HE Transactions. The third 

paper "OPTIMIZATION CRITERIA FOR INVENTORY-INVESTMENT IN SETUP OPERATIONS 

POLICIES: PROFIT VS. RETURN ON INVESTMENT" is to be submitted to Decision 

Sciences. And the sixth paper "A TRILATERAL BROKERAGE SYSTEM FOR POWER 

TRANSACTIONS" is to be submitted to International Journal of Energy 

Research. 

In Chapter 1 "OPTIMAL INVENTORY AND DISPOSAL POLICIES IN RESPONSE TO 

A SALE", we construct and analyze an EOQ-type model for a buyer who is 
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just informed of a temporary sale. The buyer is assumed to have an option 

to place special orders and an option to dispose some of his on-hand 

inventory. The key feature differentiating our model from the extant 

literature on inventory models is that the optimal inventory and disposal 

policies are fully integrated and simultaneously determined. The optimal 

policies are derived in closed-form from comparing cost savings of various 

cases of strategies, and several interesting managerial insights are 

obtained by analyzing the closed-form optimal policies. 

In Chapter 2 "OPTIMAL INVENTORY POLICIES IN RESPONSE TO A 

PRE-ANNOUNCED SALE", we construct and analyze an EOQ-type model for a 

buyer who is just informed of a pre-announced sale. By "a pre-announced 

sale", we mean the announcement time of the sale occurs before the 

beginning time of the sale. Under the pre-announced sale, the buyer is 

assumed to have an option to adjust his replenishment strategy before the 

sale is effective and an option to place special orders during the 

temporary sale. For such a buyer, optimal inventory policies are derived 

by comparing cost savings of various cases. By analyzing the optimal 

inventory policies, several managerial insights are obtained. For 

example, as the period between the announcement time of the sale and the 

commencement of the sale increases, the optimal cost saving will increase 

or remain the same. In addition, as the duration of the sale increases, 

the optimal cost saving will increase or remain the same. 

In Chapter 3 "OPTIMIZATION CRITERIA FOR INVENTORY-INVESTMENT IN SETUP 

OPERATIONS POLICIES: PROFIT VS. RETURN ON INVESTMENT", we construct and 

analyze optimal policies for inventory and investment in setup operations 



www.manaraa.com

7 

under profit maximization and under return on investment maximization. 

Under a general functional form of investment in setup operations, we 

derive the optimality conditions under profit maximization and under 

return on investment maximization. By comparing and contrasting the 

optimality conditions, several interesting economic implications are 

obtained. Also, for two specific functional forms of investment in setup 

operations (linear and hyperbolic), the closed-from optimal solutions and 

the decision making rules are derived. From the solution and rules, 

additional economic implications are obtained. 

In Chapter 4 "A IDLTI-PRODUCT EOQ MODEL WITH PRICING CONF EDERATION --

T. C. E. CHENG'S MODEL REVISITED", we present two major revisions/ 

corrections regarding a recent paper by T. C. E. Cheng (1990). First, we 

note that a critical assumption of the equal replenishment cycle length 

for all products is stated, but not incorporated into the mathematical 

formulation in Cheng (1990). In this paper, we re-formulate the problem 

with the equal replenishment cycle length incorporated and derive the 

corresponding Kuhn-Tucker optimality conditions. Next, under the linear 

demand assumption, we show that the closed-form solutions provided by 

Cheng (1990) may result in non-optimal solutions. The reason is that 

Cheng (1990) failed to derive conditions under which the closed-form 

solutions may be optimal. In this paper, by employing the trigonometric 

methods (see e.g., Porteus, 1985), we derive the optimal closed-form 

solution that is unique and obtain the conditions under which the optimal 

closed-form solution is valid. 

In Chapter 5 "A TWO-STAGE BROKERAGE SYSTEM FOR ELECTRIC POWER 
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TRANSACTIONS", we propose a two-stage brokerage system for electric power 

transactions. At the first stage of the brokerage system, a linear 

programming model is set up to maximize the total saving in matching bids 

from buyers and sellers. At the second stage of the brokerage system, how 

to determine the route(s) to transmit the transacted power is 

investigated. By employing economic analysis at each stage, we show that 

significant gains in economic efficiency can be achieved. 

In Chapter 6 "A Trilateral Brokerage System for Power Transactions", 

we extend the two-stage trilateral brokerage system for electric power 

transactions discussed in Chapter 5 to the following two aspects. First, 

multiple purchase bids and multiple sale bids from each buyer and seller 

are allowed in this paper. By formulating a linear program to match bids 

from sellers and buyers, we show that the total cost saving can be 

significantly improved. Second, instead of employing the pre-specified 

rules proposed in Chapter 5, we mathematically formulate the problem of 

selecting routes to transmit the transacted power as a nonlinear program 

and obtain the corresponding optimal solution. By incorporating the above 

two aspects and by employing a numerical example, we show that the 

economic efficiency of the brokerage system for power transactions can be 

significantly improved. 

The rest of this dissertation is organized as follows. First, those 

six papers mentioned earlier will be presented sequentially. Next, the 

general conclusion about this dissertation follows the sixth paper. 

Finally, the literature cited in the general introduction and the general 

conclusion are listed. 
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CHAPTER I. 

OPTHAL INVENTORY AND DISPOSAL POLICIES IN RESPONSE TO A SALE 

A paper accepted by 

International Journal of Production Economics 

Cheng-Kang Chen and K. Jo Min 

Department of Industrial and Manufacturing Systems Engineering 

Iowa State University 

ABSTRACT 

Ve construct and analyze an EOQ-type model for a buyer who is just 

informed of a temporary sale. The buyer is assumed to have an option to 

place special orders and an option to dispose some of his on-hand 

inventory. The key feature differentiating our model from the extant 

literature on inventory models is that the optimal inventory and disposal 

policies are fully integrated and simultaneously determined. The optimal 

policies are derived in closed-form from comparing cost savings of various 

cases of strategies, and several interesting managerial insights are 

obtained by analyzing the closed-form optimal policies. 
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1. INTRODUCTION 

In this paper, an EOQ-type model is constructed and analyzed for a 

buyer who is just informed of a temporary sale. Under the temporary sale, 

the buyer is assumed to have an option to place special orders and an 

option to dispose some of the on-hand inventory. By comparing cost 

savings of various cases of strategies (see e.g., Tersine [1]), we obtain 

the closed-form solutions of the optimal inventory and disposal policies. 

These inventory and disposal policies are fully integrated and 

simultaneously determined. By analyzing the closed-form optimal policies, 

we obtain interesting managerial insights for the buyer. 

The optimal inventory policies under price changes (increases or 

decreases), based on the classical economic order quantity (EOQ) models, 

have been extensively studied (see e.g., Lev and Veiss [2]). Also, for 

temporary price discount, there have been numerous studies investigating 

the optimal replenishment and inventory policies (see e.g., Ardalan [3]). 

Aucamp and Kuzdrall [4] [5] focus on one-time-only sales and determine the 

optimal special order quantities by employing a discounted cash flow 

approach. Ardalan [6] deals with a temporary price discount and derives 

the optimal inventory policies by employing a net present value method 

and/or by incorporating the marketing effect on demand. Aull-Hyde [7] 

discusses the optimal ordering rules in response to supplier restrictions 

on special order sizes that accompany temporary price decreases. In 

Tersine and Barman [8], a composite EOQ model, which can be disaggregated 

into several traditional EOQ models, is developed to determine the optimal 

levels of order quantity and backorder quantity in response to a temporary 
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price discount. Ve note that the models constructed and analyzed in the 

last three papers assume that the sale period is short relative to the 

regular EOQ replenishment cycle and the sale period is within a regular 

EOQ replenishment cycle. On the other hand, the optimal replenishment 

strategies for any length of sale time horizon have also been investigated 

by a number of researchers (see e.g., Goyal [9] and Tersine and 

Schwarzkopf [10]). 

Inventory policies with disposal options have also been extensively 

studied. Rosenfield [11] analyzes the costs of holding and disposing of 

slow-moving inventory under stochastic demand and perishing. Sethi [12] 

presents an optimal inventory and disposal model for a buyer faced with 

all-unit quantity discounts offered by a seller. Tersine and Toelle [13] 

develops models to determine how much stock should be retained and how 

much should be disposed of when an excess inventory of that item currently 

exists. In their paper, a list of eight reasons for excess inventory is 

provided. The numerous studies of these two topics in the literature 

reflect the relevance and importance of the topics to both academicians 

and practitioners. Also, it is intuitive that, given a temporary sale, a 

buyer may find it beneficial to place special orders at a reduced price 

and/or dispose some of on-hand inventory at a salvage value because these 

transactions may result in reduced total cost for the inventory system. Up 

until now, however, there have been few analytical models that integrate 

inventory and disposal policies under temporary sales. Hence, considering 

the fact that numerous firms utilize EOQ-based decision making processes 

for such policies (see e.g., Tersine and Toelle [13]), it is highly 
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desirable to construct and analyze EOQ-based models of inventory and 

disposal policies under temporary sales. 

In this paper, we will focus on optimal inventory and disposal 

policies for a buyer who is just informed of a temporary sale. By "just 

informed," we mean that the buyer is able to place special orders and maJie 

disposals from that time point on. That is, the emphasis is on when the 

buyer is able to respond to a sale. Hence, if the buyer is able to respond 

to a sale from a particular time point on due to administrative, 

informational, organizational, and/or other reasons, that particular time 

point is viewed as the time point at which the buyer is "just informed". 

In addition, by "a temporary sale," we mean that the sale period is short 

relative to the regular EOQ replenishment cycle. Specifically, we will 

restrict our attention to the case that the sale period is less than one 

regular EOQ replenishment cycle. Ve note that the sale period could 

actually be quite long in absolute duration (e.g., 3 months) when the 

regular EOQ replenishment cycle is also long in absolute duration (e.g., 6 

months). Hence, this assumption is not as restrictive as it may first 

appear and such an assumption can be found in several publications (see 

e.g., Ardalan [3] [6], Aull-Hyde [7], etc.). 

The rest of this paper is organized as follows. Ve first introduce 

the model environments and the structure of optimal inventory and disposal 

policies. Next, we obtain the closed-form optimal solutions by comparing 

the cost saving of various cases. We then present the decision process for 

the optimal inventory and disposal policies and provide illustrative 

numerical examples. From the numerical results, several managerial 
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insights and properties are derived. Finally, we summarize and comment on 

further research. 

2. lODEL ENVIRONIENTS 

2.1 Assumptions and Definitions 

In our model, a buyer determines the optimal order quantity from his 

supplier based on the classical EOQ model. As in numerous EOQ-type models, 

we make the following assumptions. 

1) the buyer's demand is constant over time, 

2) no shortage is allowed, 

3) replenishment is instantaneous, 

4) lead time is zero. 

Ve note that, the assun^jtion of zero lead time is made for simplicity and 

a positive lead time can be easily incorporated into our model. Also, the 

following definitions of the classical EOQ model are employed. 

£: the buyer's demand per unit time (e.g., annual demand). 

P: the purchase price per unit to the buyer from the supplier before 

and after the sale. 

F: the holding cost per unit time as a fraction of the unit purchase 

price. 

C: the ordering (setup) cost per order (i.e., a fixed cost independent 

of the order quantity). 

9^: the economic order quantity given the purchasing price per unit, P. 

i ^ n / 2 CR •^0.5 I.e., Iĵ  = {—pf) • 

Ve also note that the inventory holding cost per unit time F is assumed to 
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be a fraction of the original unit purchase price not the current or 

future unit price. 

Let us suppose that the buyer, at time point is informed that 

there is a sale effective now through time point t^, and the buyer is 

expected to make his decisions regarding his inventory and disposal 

policies. As mentioned earlier, we also assume that the sale period is 
or  0  ^  

less than one regular EOQ replenishment cycle (i.e., - < (-pyj) )• 

Ve will denote the magnitude of price decrease in the sale by d (</ > 

0), and the new purchasing price per unit for the buyer will he P - d. Let 

us assume that the buyer has an ovtion to instantaneously disvose any 

inventory at a salvage value of S per unit, where P - d > S. P - d > S is 

assumed so as to exclude the possibility of arbitrages. Let us also assume 

that the buyer has an ovtion to vlace svecial orders during the sale, at 

the reduced price of P - d per unit, regardless of the on-hand inventory 

level. Given these two options, the buyer must determine the optimal 

inventory and disposal policies. In response to a sale, a special order at 

the decreased price {P-d) and/or a disposal at the salvage value of S 

during the sale can be beneficial to the buyer because these transactions 

may result in reduced inventory holding cost components (such as capital 

costs, insurance costs, and taxes). In order to investigate the optimal 

inventory and disposal policies for the buyer, we introduce the following 

additional definitions. 

q: the level of inventory (stock position) at time point 

K: the disposal setup cost. 

Ve note that, for our model, we will optimally determine the special order 
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quantities and the disposal quantities as well as the time points at which 

special orders are placed and disposals occur. Finally, throughout the 

rest of the paper, we will assume that the products are withdrawn from 

inventory on a first-in, first-out (FIFO) basis. This is a reasonable 

assumption in numerous practical inventory systems, and it facilitates 

tractable construction and analysis of the model. 

2.2 The Structure of an Optimal Policy 

Given the fact that the buyer is informed of the sale, the special 

orders and disposals can be viewed as useful tools to reduce the total 

costs of operation. In this subsection, we investigate the special orders 

and disposals with respect to quantity and time. Specifically, we will 

initially assume that there will be only one special order and one 

disposal and derive interesting properties of the optimal policy. Based on 

these interesting properties, we will examine multiple special orders and 

disposals. Such an investigation will result in simplification of the 

mathematical models for the problem. 

Let us denote a special order quantity and a disposal quantity during 

the sale by 0 and D, respectively. Also, we define x to be the time 

interval between t^ and the time point at which the disposal occurs. In 

addition, we define y to be the time interval between tj^ and the time 

point at which the special order occurs. Furthermore, we denote the 

inventory level (including the remnant inventory) after the special order 

is received at time point (tj^+y) by Figure 1 illustrates two possible 

policies for the buyer to follow. One is to dispose D units of on-hand 
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Do not respond to the sale 

Respond to the sale 

Figure 1. General inventory behavior with options to make General 
disposal and place a special order 
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inventory at time point (ij+x) and to place a special order at time point 

{tfj+y). Ve will call this policy the "Response" policy. The other one is 

to ignore both the options to dispose and to place a special order. Ve 

call this policy the "Non-Response" policy. In order to measure the cost 

saving of the "Response" policy over the "Non-Response" policy accurately, 

the total costs of these two possible policies will be calculated from the 

h time point to the time point —) (see e.g., Tersine [1]). The 

h total cost from the time point to the time point —) for the 

"Response" policy, can be expressed as follows. 

> 2  
TC i . t ! - IS * W + f 

The corresponding total cost for the same duration for the "Non-Response" 

policy, TCy^, is given by 

„^PF L-q+Sy 0 t-
"jit ' (2) 

From the relations (1) and (2), the cost saving of the "Response" policy 

over the "Non-Response" policy, CS, is given by CS = - TCg. The 

objective now is to find the optimal x, y, and ^ , which will maximize CS. z 
Namely, 

Maximize CS = TC„o - ICn (3) 

From the maximization of the above problem, the following first 

derivatives can be easily obtained. 

dCS PR+(2C£PF)^-^ r„ 
-w~" — 1— 2 

-11^- = -Sff (5) 
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-If- = - (t-'i-m («) 

By setting equation (4) equal to zero, the optimal can be obtained as 

follows 

„ _ (2CiPF)^'^+dR {2CiPF)^'^+Pi JL _ id . P „ 
h = {P- d)F = {P- d)F r - W1 h 

Ve note that the expression of Q in equation (7) is identical to the 

special order quantity shown in Tersine [1] when on-hand inventory level 

is zero. By substituting equation (7) into equation (6), we have the 

dCS following expression for —. 

-If-= - (j-irf)] > 0 (8) 

We summarize those results in the following two propositions. 

Proposition 1. Assume that the buyer makes a disposal of on-hand inventory 
afc 

during the sale. Then, — < 0. 

Proposition 1 implies that the cost saving will increase when 2 is 

decreased. That is, if the buyer makes a disposal, his optimal strategy is 

to dispose as early as possible (i.e., dispose at time point when x = 

dCS 0). From the fact that — < 0, for the case of one disposal, it can be 

easily shown that the strategy of multiple disposals during the sale 

period is never optimal. 

Proposition 2. Assume that the buyer places a special order during the 

sale. Then, we have: 

„ (2CSPF)^-KdR . 
h - [P-d)F 

2) and > 0-
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The economic implications of Proposition 2 are as follows. If the 

buyer places a special order during the sale, the optimal strategy is to 

replenish the inventory up to the level regardless of 

the level of on-hand inventory. 

dCS In addition, (from — > 0), the cost saving will increase when y 

is increased. That is, if the buyer places a special order during the 

sale, his optimal strategy is to place the special order as late as 

possible. We note that this observation is consistent with the Theorem 1 

in Ardalan [3]. Also, this observation directly leads us to the following 

conclusion regarding multiple special orders. 

Let us first consider the case where the level of on-hand inventory 

is non-negative at t without any special order. If the buyer places a w 

special order, the optimal time point to do so is at time point because 

dCS — > 0. Hence, it can be easily shown that the strategy of multiple 

special orders during the sale is never optimal. 

For the case where the level of on-hand inventory reaches zero before 

t , let us denote the time point at which inventory reaches zero during 

the sale by (i.e., < t^]. According to the Theorem 1 in Lev and 

Veiss [2], we note that the buyer can have a special order right at 

or have some equal- size orders to meet the demand from t to t and then 0 e 

place a special order at (see Figure 2). The following proposition 

determines the possible optimal inventory strategies for the buyer from 

time point to time point t^. 
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X n orders 

te 

Figure 2. Optimal inventory behavior from t^ to t^ 
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Proposition 3. Assume that, during the sale, the inventory reaches zero at 

time point possible optimal strategy for the buyer from 

to is either to place a special order at or to place a special 

order to meet the exact demand from i to i and an additional special 0 e 

order Q at < . 
Z 6 

Proof; 

Ve note that the buyer minimizes the total cost incurred from t to t ' 0 e 

over the number of orders, n. Hence, we have the following total cost 

minimization objective function. 

{t-tyi{P-d)F 
Minimize =  n C  +  ^  + { t d )  (9) 

n 

By setting the first derivative of with respect to n equal to zero, 

the optimal number of orders n is given by 

(2C/{{P-d)Fi)y-^ 

It can be easily verified that 0 < n < 1. By incorporating the integer 

constraint on the decision variable n, we note that the optimal integer 

number of orders n is equal to 0 or 1. If n =0, the buyer places a 

special order 0 at t . On the other hand, if n* = 1, the buyer has only 
Z 0 

one order of at to meet the demand from t to t„ and then ^ e 0' 0 0 e 

places a special order 0 at t . Throughout the rest of this paper, we 
Z 6 

will denote the special order quantity which satisfies the demand from 

to t by Therefore, for the case that the inventory level reaches zero u <S 

before if the buyer places special orders, then the number of special 

orders during the sale is either one or two. 

So far, we have presented the potential structure of an optimal 
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inventory and disposal policies. Under the assumption that the sale period 

is less than one regular EOQ replenishment cycle, we note that it is 

possible to have no regular EOQ replenishment point or only one regular 

EOQ replenishment point during sale period. The following two sections 

will discuss these two scenarios and derive the corresponding closed-form 

solutions for the optimal inventory and disposal policies. 

3. NO REGULAR EOQ SEPLENISHHENT POINT DinUNG TEE SALE (q > i^,)) 

3.1 Description of Exclusive and Exhaustive Cases 

In this section, we consider the case that no regular EOQ 

replenishment point exists during the sale (i.e., q > According 

to Propositions 1, 2, and 3 in the previous section, the feasible policies 

can be classified into the following nine mutually exclusive and 

exhaustive cases. 

Case 1): q > D > 0, {q - D) = R{t - t,) and ^ > 0 at t . C V o c 

Case 2): q > If > 0, (q - If) > S(t - t,) and ^ > 0 at t . C (/ w C 

Case 3): q > D > Q, {q - D) > £{t - if) and ^ = 0 at t . C 1/ O V 

Case 4): q > D > 0, [q - D) < i{t^ - and > 0 at t^. 

Case h): q > D > 0, {q - D) < i{t^ - t^), at t^, ajid > 0 

at t . e 

Case 6): B = q, > 0 at t^. 

Case 7): D = q, lj\ = - tu) at t,, and 0 > 0 a.t t . 
S Q 0 0 S S 

Case 8): D = 0, > 0 at t . o c 

Case 9): D  =  0  and 9 ^ = 0  (i.e. "Non-Response" policy). 

Given the above nine cases, we will employ Case 9 of no-special-order and 
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no-disposal (i.e., wait until the remnant inventory is depleted and then 

e.g., Tersine [1]). Cases 1 through 8 will be examined against this 

benchmark to determine the optimal disposal amount at time point 

3.2 Cost Saving Comparisons for the case q > 

In this section, we will examine the cost savings of Case 1 through 

Case 8 relative to Case 9. Ve note that the cost savings will be examined 

under the aforementioned assumption of no arbitrage {i.e., P - d > S). 

Case 1): q > D > 0, {q - D) = i{t - tA and ^ > 0 at t . C U O V 

In this case, the optimal disposal quantity is uniquely determined 

by the constraint (q - D) = S{t^ - t^). Hence, it can be easily verified 

that D* = q - S{t^- t^) and = fj^. 

Case 2): q > D > 0, {q - D) > i{t^ - t^) and > 0 at t^. 

When {q - D) > R{t - tA and ^ > 0 at / , the next regular EOQ 6 0 O w 

replenishment occurs {q - D + 9^)/^ time units after ij. In order to 

measure the cost saving of Case 2 over Case 9, the total costs of Case 2 

and Case 9 will be calculated for the time duration of {q - D + ̂  )/S (see s 

e.g., Tersine [1]). The total cost for the duration of {q - D + IJ )fS for s 

Case 2, T'fi'g, can be expressed as follows. 

The total cost for the same duration for Case 9, TCg2, is given by 

purchase = (-py—) " for all subsequent orders) as the benchmark (see 2C£ ̂ 0.5 

TC2 = K - OS + 

(11) 

0 5 -^{PS+{2CSPFy-^) (12) 
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From the relation (11) and (12), the cost saving of Case 2 over Case 

9, CS2 is given by CS2 = TCg^ - The objective now is to find the 

optimal disposal amount (which will maximize the cost saving CS^, 

Namely, we will solve the following problem for 5^. 

Maximize CS2 = TCg2 - TC2 (13) 

From (13), it can be easily verified that 

(P-d-S)R 
h = ^ 2 ^ dF 

4  =h  - -  H i e  -  ( 1 5 )  

By examining Case 3 through Case 8 in a similar way, we have the 

following. 

Case 3): q > D > 0, {q - D) > R{t^ - <j) and = 0 at 

"J = « - - h (16) 

= 0. (17) 

Case 4): q > D > 0, {q - D) < R{t^ - i^) and > 0 at 

"J = « - - h (18) 

'̂34 ' "z- (19) 

Case 5): g > /? > 0, (g - D) < - tj^), ^5=^(^5-^0) at and > 0 

at 

, [(,p-d)r(t -tMP-d)-s]i 
'j " ' • (̂ '') 

lis - h- (21) 

Case 6): B = q, 9 > 0 at ty 

Og = ? (22) 

Ks = h- (23) 
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Case 7): D = q, Ij^ = S{t^- t^) at and > 0 at 

D j =  q  

K? = h' 

(24) 

(25) 

Case 8): D = 0, 0 > 0 aX t„. 
3 G 

K - o  

K s ' h -

(26) 

(27) 

From equations (16) and (18), we note that the optimal disposal quantities 

is unrealistic for the disposal quantity to be negative. Hence, Case 3 or 

Case 4 will never be an optimal policy and they can be eliminated from any 

further consideration. Next, by directly comparing the optimal savings, 

CSg, CSg and CS^ relative to CS*p it can be easily verified that CS*^^ - CS*^ 

> 0, CS*j^ - CSg > 0 and CS*^ - CS^ > 0. It indicates that the optimal 

decisions of Case 1 dominate the optimal decisions of Case 5, Case 6 and 

Case 7. Therefore, Case 5, Case 6 or Case 7 will never be an optimal 

policy. 

So far, we have excluded the possibilities of an optimal policy 

existing for Cases 3, 4, 5, 6, and 7. Therefore, the possible optimal 

policies can be listed as follows. 

Case 1): q > D > 0, {q - D) = R{t - i,) and > 0 at < . C (/ O 

Case 2): q > D > 0, (q - ff) > S(t^ - i^) and > 0 at 

Case 8): D = 0, ^ > 0 at t . O u 

Case 9): D = 0 and 9^ = 0 (i.e. "Non-Response" policy). 

¥e note that Policy 1 may be the optimal policy only if CS*j^ > 0. The 

corresponding conditions under which Case 1, 2, 8, and 9 may be the 

D*̂  and are strictly less than zero (i.e., q - < 0). It 
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optimal policy are summarized in Table 1. Also, we note that the 

conditions in Table 1 are necessary conditions for the optimal policy. If 

there are more than one case with the necessary conditions satisfied, then 

the optimal cost saving of each case will be computed and the case with 

the maximum optimal cost saving will be the optimal policy. 

Ta )le 1. The conditions under which case 1, 2, 8, or 9 may be optimal 

Case Conditions 

1 CS* > 0 

2 q >  d I >  0 ,  Q ,  q -  D * ^ >  £ { t ^  -  t ^ ) ,  C S * ^  >  0 

8 CS*g > 0 

9 the conditions for case 1, 2, abd 8 do not hold 

4. ONE BEGULAR EOQ BEFLENISHIENT POINT DMING THE SALE {q < 

4'1 Description of Exclusive and Exhaustive Cases 

In this section, we consider the case that there exists one regular 

EOQ replenishment point during the sale (i.e., q < i{t^-t^)). We note that 

Propositions 1, 2, and 3 still hold for the case of 5 < 

Therefore, the feasible policies can be classified into the following 

seven mutually exclusive and exhaustive cases. 

Case k): 0 < D < q and 0 > 0 a.t t . ' ^ s 0 

Case B): 0 < 5 an*! ^3 > 0 at 

Case C): D = q, > 0 at ty 

Case d): D = q, = S{t^- at tj^, and > 0 at t^. 

Case E): D = 0, > 0 at i^. 
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Case F): D = 0, = £{t -t ) at t , and ^ > 0 at t . o 0 0 o ti 

Case G): J) = 0 and Ij. = 0 (i.e. "Non-Response" policy). o 

Given the above seven cases, we will employ Case G of no-special-order and 

no-disposal (i.e., wait until the remnant inventory is depleted and then 

e.g., Tersine [1]). Cases A through F will be examined against this 

benchmark to determine the optimal disposal amount at time point 

4.2 Cost Saving Comparisons for the case q < 

In this section, we will examine the cost savings of Case A through 

Case F relative to Case G. Ve note that the cost savings will be examined 

under the aforementioned assumption of no arbitrage (i.e., P - d > S). By 

performing similar formulations and manipulations discussed for the case q 

> ill Section 3.2, we can have the following results for cost 

saving comparisons. 

Case A): 0 < D < q and > 0 at t^. 

purchase Ij^ = (-^y—) ' for all subsequent orders) as the benchmark (see 2Ci xO.5 

Case bj: u < // < g, at < , and 0 > 0 aX t^. 
3 o 0 0 o S 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 
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Case D); = 5, ti) at t,, and > 0 at 

i'l = d (34) 

=h (35) 

Case E): B = 0, ? > 0 at i . 

4 = 0 (36) 

C = f. (37) 

Case F): 5=0, at i , ajid > 0 at t. 
o G 0 0 S 6 

= 0 (38) 

C = h (39) 

From equation (28), we note that the optimal disposal quantity is 

strictly less than zero (i.e., q - < 0). It is unrealistic 

for the disposal quantity to be negative. Hence, Case A will never be an 

optimal policy and it can be eliminated from any further consideration. 

Next, by directly comparing the optimal savings, CS^ relative to CS^ and 

relative to CSg, it can be easily verified that CS^ - CS*^ > 0 and CS^ 

- CS*jj > 0. It indicates that the optimal decisions of Case E dominate the 

optimal decisions of Case C and the optimal decisions of Case B dominate 

the optimal decisions of Case D. Therefore, Case C or Case D will never be 

an optimal policy. Also, we note that CS*^ is strictly greater than zero. 

Hence, Case G (i.e., "Non-Response" policy) will never be an optimal 

policy. 

So far, we have excluded the possibilities of Cases A, C, D, and G 

being an optimal policy. Therefore, the possible optimal policies can be 

listed as follows. 

Case B): 0 < D < q, = S{t -t ) at Z , and > 0 at i . o G u 0 o V 
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Case E): /? = 0, > 0 at 

Case I): D = 0, ̂ \ = S(t -t ) at t , and ^ > 0 at t . o G O 0 o 6 

The corresponding conditions under which Policies B, E, and F may be the 

optimal policy are summarized in Table 2. 

Table 2. The conditions under which case B, E, or F may be optimal 

Case Conditions 

B q > Dg> 0, CSg> 0 

E 

F CSp > 0 

As in section 3.2, we note that the conditions shown in Table 2 are 

necessary conditions for the optimal policy. If there are more than one 

case with the necessary conditions satisfied, then the optimal cost saving 

of each case will be computed and the case with the maximum optimal cost 

saving will be the optimal policy. 

5. DECISION PROCESS AND NDMERICAL RES1]LTS 

Thus far, we have formulated the mathematical model and derived the 

optimal inventory and disposal policies. In this section, we first 

elaborate on the decision process that effectively leads to the optimal 

policy. Next, under given sets of parameter values, we demonstrate that 

with small variations in parameter values, all seven cases (four under q > 

and three under q < will become optimal policies. We 

also provide additional managerial insights. 



www.manaraa.com

30 

5.1 Decision Process 

By comparing the possible optimal policies provided in subsections 

3.2 and 4.2, we have the following results. 

1. Considering Case 8 and Case 9 in subsection 3.2, if ( 

> 1, then Case 9 dominates Case 8. Otherwise, Case 8 dominates Case 

9. 

2. Considering Case E and Case F in subsection 4.2, if d < a, then Case 

E dominates Case F, where 

Otherwise, Case F dominates Case E. 

By incorporating the results described above, the decision process 

can be simplified as the diagram shown in Figure 3. 

5.2 numerical Results 

In this subsection, we demonstrate that all seven cases can be 

optimal policies with only one or two changes in values of parameters. To 

achieve our objective, we select the discount magnitude d and the on-hand 

inventory level q at as the parameters whose values change. Example 1 

is designed to study the cases oi q > while Example 2 is to study 

the cases of q < The following values of the parameters are 

employed for both Example 1 and Example 2: ̂ =100, 1=800, f=0, 5=18, 

£"=5490, and ^=0.5. 

Exagple 1. Given the sale period we perform the sensitivity 

analysis on optimal inventory and disposal polices with respect to on-hand 
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Figure 3. The decision process for the optimal inventory and disposal policies 



www.manaraa.com

32 

inventory q and discount magnitude d. Table 3 presents the results. 

By examining Table 3 carefully, we make the following interesting 

observations for Example 1. 

1) When the discount magnitude d is sufficiently small and the on-hand 

inventory level g at ijj is large enough (e.g., d = 1 and q > 275), 

the policy of Case 9 is optimal (i.e., "Non-Response" policy). 

2) When the discount magnitude d is neither too large nor too small 

(e.g., d = 20, 35 or 50), the policy of Case 8 is optimal (i.e., do 

not dispose at but place a special order ll*g at t^) regardless of 

the on-hand inventory level ? at 

3) When the discount magnitude d is reasonably large (e.g., d = 65) and 

the on-hand inventory level q at is sufficiently high (e.g., q > 

310), the policy of Case 2 is optimal (i.e., dispose at and 

place a special order at t^). 

4) When the discount magnitude d is sufficiently large (e.g., d = 80), 

the policy of Case 1 is optimal (i.e., dispose D*^ at and place a 

special order at t^) regardless of the on-hand inventory level q 

at ^ ̂' 

ExaBple 2. All the parameter values are the same as Example 1 with the 

exception that the sale period = 0.5. The corresponding results 

are shown in Table 4. 

By examining Table 4 carefully, we make the following interesting 

observations for Example 2. 
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Table 3. Optimal inventory and disposal policies for q > 

d=l d = 5 II d=35 d = 50 d = 65 

o
 

00 II 

<7 = 245 8 357 8 2550 8 15621 8 40291 8 87024 8 184152 1 445152 

q = T15 9 0 8 1650 8 14265 8 38485 8 84756 8 181429 1 442393 

<? = 310 9 0 8 667 8 12740 8 36418 8 82147 2 nme 1 439246 

q = 345 9 0 9 0 8 11276 8 34401 8 79576 2 175216 1 436176 

<7 = 380 9 0 9 0 8 9874 8 32433 8 77043 2 172222 1 433182 

<7 = 415 9 0 9 0 8 8532 8 30515 8 74548 2 169305 1 430264 

CO 
CO 
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Table 4. Optimal inventory and disposal policies for q < 

d = l  d = 5 d = 20 d=35 D = 50 d = 65 RF = 80 

<7 = 20 F 390 F 2413 F 14825 F 38842 F 84910 F 181380 F 441656 

<7 = 65 F 162 F 1964 F 13550 F 36742 F 81948 F 177628 F 437078 

<7 = 110 E 13 F 1396 F 12175 F 34559 F 78995 F 173832 B 465084 

<7 = 155 E 13 F 706 F 10698 F 32295 F 75942 F 169992 B 427989 

<7 = 200 E 13 E 335 F 9119 F 29948 F 72826 F 166107 B 423619 

<7 = 245 E 13 E 335 F 7440 F 27518 F 69647 F 162178 B 419376 

<7 = 245 E 13 E 335 E 6370 F 25007 F 66405 F 158204 B 415260 

<7 = 245 E 13 E 335 E 6370 E 24011 E 63702 B 154224 B 411270 

<7 = 245 E 13 E 335 E 6370 E 24011 E 63702 E 153795 E 407693 
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1) When the discount magnitude d is sufficiently small (e.g., </ = 5) and 

the on-hand inventory q at is sufficiently high (e.g., q > 200), 

the policy of Case E is optimal (i.e., do not dispose at but place 

a special order at . 

2) When the on-hand inventory q at is sufficiently small (e.g., q = 

20 or 65), the policy of Case F is optimal (i.e., do not dispose at 

tjj but place a order pl^'Ce a special order 

^sF regardless of the discount magnitude d. 

3) When the discount magnitude d is sufficiently high (e.g., d = 80) and 

the on-hand inventory level ? at is neither too high nor too low 

(e.g., 110 < q < 335), the policy of Case B is optimal (i.e., dispose 

Dg at ij, place a special order 1}^ = at and place a 

special order at t^). 

Furthermore, we note that the following properties can be easily verified 

by way of simple calculus. 

Property 1. < 0 for all cases. 

Property 2. — > 0 and g- > 0 for all cases. 
dd 

Property 1 implies that when the on-hand inventory q increases, the 

optimal cost saving for the inventory and disposal policies will decrease 

or remain the same. 

Meanwhile, Property 2 implies when the discount magnitude d 

increases, the optimal cost saving for the inventory and disposal policies 

will increase or remain the same. In addition, the difference in the 

increase of the optimal cost saving increases as the discount magnitude d 

increases. 
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6. CONCLUSIONS 

In this paper, we constructed and analyzed an EOQ-type model for a 

buyer who was just informed of a temporary sale. For such a buyer, optimal 

inventory and disposal policies were derived by comparing cost savings of 

various cases. By analyzing the optimal inventory and disposal policies, 

several managerial insights were obtained. In particular, as the discount 

magnitude d increases, the optimal cost saving will increase or remain the 

same. On the other hand, as the on-hand inventory level g at 

increases, the optimal cost saving will decrease or remain the same (this 

is consistent with Theorem 1 in Ardalan [3]). 

This paper can be viewed as an exploratory investigation of 

integrating the inventory policies in response to sales and the inventory 

policies with disposal options. Therefore, numerous extensions that will 

enhance the model presented in this paper can be made. For examples, one 

class of extensions can be made with respect to the duration of the sale. 

That is, the duration of a sale may be relatively long (e.g., longer than 

one regular EGQ cycle). 

Another class of extensions can be made with respect to the time at 

hich the sale is known to the buyer and to the time at which the sale is 

in effect. An additional class of extensions can be made with respect to 

policies of a seller regarding buyers' disposals. Implicitly, in this 

paper, it is assumed that the seller will not react to the buyers' 

disposal (if any). It would be of interest to investigate several possible 

policies of a seller, e.g., prohibition of disposals, benefit sharing of 

disposals, etc. Ve believe that such extensions will improve the 
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applicability in practice of the inventory/disposal models in response to 

sales. We hope this improvement in applicability, in turn, will result in 

increased economic efficiency for the buyer (as well as the seller). 
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ABSTRACT 

Ve construct and analyze an EOQ-type model for a buyer who is just 

informed of a pre-announced sale. By "a pre-announced sale", we mean the 

announcement time of the sale occurs before the beginning time of the 

sale. Under the pre-announced sale, the buyer is assumed to have an 

option to adjust his replenishment strategy before the sale is effective 

and an option to place special orders during the temporary sale. For such 

a buyer, optimal inventory policies are derived by comparing cost savings 

of various cases. By analyzing the optimal inventory policies, several 

managerial insights are obtained. For example, as the period between the 

announcement of the sale and the conmiencement of the sale increases, the 

optimal cost saving will increase or remain the same. In addition, as the 

duration of the sale increases, the optimal cost saving will increase or 

remain the same. 
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1. Introdnction 

In this paper, an EOQ-type model is constructed and analyzed for a 

buyer who is just informed of an announcement from his supplier that there 

will be a temporary sale in the near future. Under the pre-announced 

sale, the buyer is assumed to have an option to adjust his replenishment 

strategy before the temporary sale is effective and an option to place 

special orders during the temporary sale. By comparing cost savings of 

various cases of strategies (see e.g., Tersine, 1994), we obtain the 

optimal solutions for the inventory replenishment strategies. By 

analyzing the optimal solutions, we obtain interesting managerial insights 

for the buyer. 

The optimal inventory policies under price changes (increases or 

decreases), based on the classical economic order quantity (EOQ) models, 

have been extensively studied (see e.g., Taylor and Bradely, 1985; Lev and 

Veiss, 1990). Also, for temporary price decreases, there have been 

numerous studies investigating the optimal replenishment and inventory 

policies (see e.g., Ardalan, 1988, 1994 or Aull-Hyde, 1992). Ardalan 

(1994) deals with a temporary price discount and derives the optimal 

inventory policies by employing a net present value method and/or by 

incorporating the marketing effect on demand. Aull-Hyde (1992) discusses 

the optimal ordering rules in response to supplier restrictions on special 

order sizes that accompany temporary price decreases. In Tersine and 

Barman (1995), a composite EOQ model, which can be disaggregated into 

several traditional EOQ models, is developed to determine the optimal 

levels of order quantity and backorder quantity in response to a temporary 
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price discount. Ve note that the models constructed and analyzed in the 

last three papers assume that the sale period is short relative to the 

regular EOQ replenishment cycle and the sale period is within a regular 

EOQ replenishment cycle. Also, there exists an implicit assumption in the 

last three papers that the announcement time of the temporary sale is 

identical to the beginning time of the sale. 

The numerous studies of the topic of the inventory policies with 

temporary price discounts in the literature reflect the importance of the 

topic to both academicians and practitioners. Also, it is intuitive that, 

given a pre-announced temporary sale, a buyer may find it beneficial to 

adjust his replenishment strategy before the temporary sale and/or place 

special orders during the sale at a reduced price because these 

transactions may result in reduced total cost for the inventory system. 

Up until now, however, there have been few analytical models that 

investigate the inventory replenishment policies under pre-announced 

temporary sale. Hence, considering the fact that numerous firms utilize 

EOQ-based decision making processes for such policies, it is highly 

desirable to construct and analyze EOQ-based models of inventory policies 

under pre-announced temporary sale. 

In this paper, we will focus on optimal inventory replenishment 

policies for a buyer who is just informed of an announcement from his 

supplier that there will be a temporary sale in the near future. By "just 

informed," we mean that the buyer is able to respond to the temporary sale 

from that time point on. That is, the emphasis is on when the buyer is 

able to respond to a sale. Hence, if the buyer is able to respond to a 
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sale from a particular time point on due to administrative, informational, 

organizational, and/or other reasons, that particular time point is viewed 

as the time point at which the buyer is "just informed". Also, we want to 

point out that the implicit assumption that the announcement time of the 

temporary sale is identical to the beginning time of the temporary sale in 

previous publications (see e.g., Ardalan, 1988, 1994; Aull-Hyde, 1992; 

Tersine aad Barman, 1995) is relaxed in this paper. In contrast to the 

previous literatures, we assume that the announcement time of the 

temporary sale occurs earlier than the beginning time of the temporary 

sale. This is what we mean by "pre-announced". In addition, by 

"temporary sale," we mean that the sale period is short relative to the 

regular EOQ replenishment cycle. Specifically, we will restrict our 

attention to the case that the sale period is less than one regular EOQ 

replenishment cycle. Ve note that the sale period could actually be quite 

long in absolute duration (e.g., 3 months) when the regular EOQ 

replenishment cycle is also long in absolute duration (e.g., 6 months). 

Hence, this assumption is not as restrictive as it may first appear and 

such an assumption can be found in several publications (see e.g., 

Ardalan, 1988, 1994; Aull-Hyde, 1992; Tersine and Barman, 1995). 

The rest of this paper is organized as follows. Ve first introduce 

the model environments and the possible sets for the pre-announced 

temporary sale. Next, we obtain the optimal solutions by comparing the 

cost saving of various cases. Ve then present the decision process for 

the optimal inventory replenishment policies aad provide illustrative 

numerical examples. From the numerical results, several managerial 
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insights and properties are derived. Finally, we summarize and comment on 

further research. 

2. lodel Enviroiiiients: issuBptions and Definitions 

In our model, a buyer determines the optimal order quantity from his 

supplier based on the classical EOQ model. As in numerous EOQ-type 

models, we make the following assumptions. 

1) the buyer's demand is constant over time, 

2) no shortage is allowed, 

3) replenishment is instantaneous, 

4) lead time is zero. 

Ve note that, the assumption of zero lead time is made for simplicity and 

a positive lead time can be easily incorporated into our model. Also, the 

following definitions of the classical EOQ model are employed. 

S: the buyer's demand per unit time (e.g., annual demand). 

P: the purchase price per unit to the buyer from the supplier before 

and after the temporary sale. 

F: the holding cost per unit time as a fraction of the unit purchase 

price. 

C: the ordering (setup) cost per order (i.e., a fixed cost independent 

of the order quantity). 

1]̂ : the economic order quantity given the purchasing price per unit, P. 

^ n / 2 CS 0.5 i-e., Ijg = i—pjr-) . 

We also note that the inventory holding cost per unit time F is assumed to 

be a fraction of the original unit purchase price. 
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Let us suppose that the buyer, at time point t , is informed that 

there is a sale effective from through and the buyer is expected to 

make his decisions regarding his inventory policies. As mentioned earlier, 

we also assume that the sale period is less than one regular EOQ 
OP 0 ̂  

replenishment cycle (i.e., < ( pp^) ' ). Also, we note that the 

relationship of holds throughout the rest of this paper. 

Ve will denote the magnitude of price decrease in the sale hy d {d > 

0), and the new purchasing price per unit for the buyer will he P - d 

during the sale. Also, we denote the on-hand inventory level (stock 

position) at time point by q and the q units of inventory will be 

depleted at time point (i.e.j ~ assume that the 

buyer has the option to respond to the pre-announced temporary sale after 

the buyer is informed of the sale at t . Given this option, the buyer (m 

must determine the optimal inventory policies from t to t . In response (JL 6 

to the pre-annomiced temporary sale, adjusting the inventory replenishment 

strategy from to and/or placing special order(s) at the decreased 

price {P - d) during the sale can be beneficial to the buyer because these 

transactions may result in reduced total cost of the inventory system. By 

examining the time sequences of and we can have the 

following three mutually exclusive and exhaustive sets of precedence 

relationships under the assumption that the sale period is less than one 

regular EOQ replenishment cycle. 

Set A: i„ < ih < K ̂  a 0 e - 0 

Set B; t < tj, < t„ < a  0 - 0  e  

Set C; i„ ̂  < ti, < a ~ 0 0 e 
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For our models, we will optimally determine the special order 

quantities and the time points at which special orders are placed for the 

above three sets. The following three sections will investigate these 

three sets and derive the corresponding optimal solutions for the 

inventory policies. Also, we note that the earliest time for the buyer to 

respond to the announced temporary sale is at for Set A while they are 

at for Set B and Set C. Finally, throughout the rest of the paper, we 

will assume that the products are withdrawn from inventory on a first-in, 

first-out (FIFO) basis. This is a reasonable assumption in numerous 

practical inventory systems, and it facilitates tractable construction and 

analysis of the model. 

3. Set A: < h < < t„ a 0 e - 0 

In this section, we consider the set that < , t,, and i are all 

within an regular EOQ replenishment cycle (i.e., ^ ^q)-

Figure 1 illustrates two possible policies for the buyer to follow. One 

is to place a special order during the sale. ¥e will call this policy the 

"Response" policy. The other one is to ignore the option to place a 

special order during the sale. Ve will call this policy the 

"Non-Response" policy. The following Lemma determines the optimal time 

point at which the special order is placed for the "Respond" policy. 

Lemna 1. The optimal time point at which the special order is placed for 

the set k'. t„ < t, < t„ < t isati. a 0 e - 0 e 

Proof: See Appendix. 
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Do not respond to the sale 

Respond to the sale 

to 

Figure 1. The case for t < t, < t < t ° a 0 e - 0 



www.manaraa.com

47 

Ve will denote the on-hand inventory level at ig by q (i.e., q = q -

- t )). Also, we will denote the inventory level at t after the special cZ 6 

order (including the inventory before the special order, i.e., q) by . 

In order to measure the cost saving of the "Response" policy over the 

"Non-Response" policy accurately, the total cost will be calculated from 

te to (ig + -J—) (see e.g., Tersine, 1994). The total cost from the time 

h point to the time point (^g + -j—) for the "Response" policy, TC^, can 

be expressed as follows. 

+ ^ (1) 

The corresponding total cost for the same duration for the "Non-Response" 

policy, TCyg, is given by 

"m = + -T— C' (2) 

From the equations (1) and (2), the cost saving of the "Response" policy 

over the "Non-Response" policy is given by 9^ = - TC^. The objective 

now is to find the optimal 0 which will maximize G.. Namely, O 1 

Maximize (3) 

From the maximization of the above problem, the following first 

derivatives can be easily obtained. 

PR ̂  qiP-d)F 
~w~ ~ 2 ^ ' ~ f 5 ^ ̂  s 

By setting equation (4) equal to zero, the optimal can be obtained as 

follows 
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„* dR + a/ ^CiPF PR + yfJUm R _ Rd , P „ 
hei = {P - d)F— = {P- d)F r - TF̂  -TTh 

Equation (5) implies that if the buyer places a special order during the 

sale, the optimal strategy is to replenish the inventory up to the level 

1/̂  = ®̂§3,rdless of the level of on-hand inventory at 

Me note that the expression of IJ*^g^ in equation (5) is identical to 

the special order quantity shown in Tersine (1994) or Ardalan (1988) when 

on-hand inventory level is zero. Also, we will denote the quantity 

{P ̂  by throughout the rest of this paper. 

By substituting the closed-form solution of into (3) and by 

performing some algebraic manipulations, we can obtain the optimal cost 

saving as follows. 

K = " K „ S Is - >1 («' 

In such a case, it is not always advantageous to place the special order 

during the sale. By examining the expression of ffp we can have the 

following decision-making rules for the set that t^, and are 

all within a regular EOQ replenishment cycle. 

* p 0 5 
If (^^ - q) > p . d ^ place a special order up to the 

inventory level at t . 

Else ignore the announced temporary sale. 

Exhibit 1. The decision-making rule for the set of t„ < t, < t„ < t„. ° a 0 e - 0 
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We note that the result of Exhibit 1 is identical to the result in Tersine 

(1994) or Ardalan (1988) since t^, t^, and are all within a regular EOQ 

cycle. We also note that, throughout the rest of the paper, we will 

employ the "Non-Response" policy as the benchmark and formulate the cost 

savings as the performance criteria. 

4. Set B: < tj, < < a  0 - 0  e  

In this section, we consider the set that and are within an EOQ 

replenishment cycle while is within the EOQ replenishment cycle which 

follows the cycle contains and (i.e., ^ < ^g)- ^6 i^ote 

that the buyer can either place a special order right at or place a 

special order to meet the exact demand from to and an additional 

special order at Figure 2 illustrates these two "Respond" policies as 

well as the "Non-Response" policy for the buyer to follow. We will first 

examine the policy that places a special order at By performing 

similar formulations and manipulations discussed for the set 

L 
< and by considering the duration from to + -j—)j we can easily 

obtain the cost saving of the policy that places a special order at 

over "Non-Response" policy as follows. 

From the maximization of the above problem, the following first derivative 

with respect to can be easily obtained. 

Maximize 6^ = + V 2CR[f-d)F J+ ( °) [Pi + V 2tW ) 

- ^ - d) 57 (7) 
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Do not respond to the sale 

Respond to the sale 

h 

Figure 2. The case for ^ 
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^^2 _ PS + V ̂ C&PF f„ 
r— - J - flj V (oj - J - u.) J 
O 

By setting equation (8) to zero, the optimal can be obtained as 

follows. 

n* n*^ ^ dR + V iCRPF PR + V mPF 5 _ Rd . P „ 
hG2 - [P - d)F— - {P - d)F 7 = X7  ̂̂  

Ve note that the expression of ^*^2 equation (9) is identical to the 

special order quantity shown in equation (5). By substituting the 

closed-form solution of ^*^2 ^2 performing some algebraic 

manipulations, we can obtain the cost saving as follows. 

'0 

From equation (10), we can easily concluded that, it is always 

advantageous to place the special order at during the sale for the 

set of < t, < < < . a 0 - 0 e 

Now we proceed to examine the policy that places a special order to 

meet the exact demand from t to t and an additional special order at t . 0 e ^ e 

By considering the duration from to + -j^)j we can easily obtain 

the cost saving 6^ of the policy that places a special order to meet the 

exact demand from i to i and an additional special order at t  over the 0 e e 

"Non-Response" policy as follows. 

L 9^ 
Maximize = —^[{P-d)R + V 2CR{P-d)F J + [{t^ - t^) + -

L IP.(P - d)F 
- / - ]  (PS +  V  mPF )  -  c  -  u^{p  -  d )  -  ^  '5''̂  " ST 

- ^0^ •t,- tfif- d)F 
- e- 'iU- 'oX'- •') ^T (11) 

From the maximization of the above problem, the following first derivative 
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with respect to can be easily obtained. 

PR + ̂ rmFT fj, 
-j]j— = J K - a) J 

By setting equation (12) to zero, the optimal 0  can be obtained as s 

follows. 

n* n*s ^ dR + mPF _ PR+^/TUm R _ Rd P „ 
hGS h' = (i> - d)F - {P- d)F ' J - "[7̂  

We note that the expression of ^*^2 in equation (13) is identical to the 

special order quantity shown in equation (5). The following proposition 

determines the optimal inventory strategies between the policy of placing 

a special order right at and the policy of placing a special order to 

meet the exact demand from i to i and an additional special order at t . 0 e ^ e 

Proposition 1. Assume that, occurs during the sale. Also, we denote 

the EOq at price {P - d) by Ij (i.e., J = 

(Is - {(if -
If (ig - t^) < J 5 then place a special order 

at t^. 

Else, place a special order to meet the exact demand from to 

and an additional special order at t^. 

Proof: 

By comparing cost savings of the policy that places a special order s 

right at and the policy of placing a special order to meet the exact 

demand from i to t and an additional special order Ij* at t (i.e., St vs 
1 / 6  S G ^ 

ffg), we note that if " ^3 > 0, then a special order of at will be 

the optimal policy. After some eliminations of identical terms, we can 

obtained the following relation for 6^ - Sy 
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(t.-t.)^l(f-d)F 
K - 3̂' "* i + -it^-t„)(M*rmTr) 

After some algebraic manipulations, we note that " ^3 > 0 if - ig) 

ds + ilf - 9^ - {9f -
> — J or (ig - ig) < —^ J • Ve note that 

Is * (1? -
' e  "  '  T  

- ij) is less than one regular EOQ replenishment cycle. Therefore, the 

only condition that enables ffg " ^3 > 0 is {t^ - t^) < j . 

Me note that Proposition 1 is an extension of Corollary 1 in Ardalan 

(1988) which only considers the policy of placing a special order I/* at 0 

t^. Me note that Proposition 1 also explicitly states the decision-making 

rule for the set of t„ < t, < ^ . a  0 - 0  e  

5. Set C: t„ < < tj, < 
a - 0 0 e 

In this section, we investigate the set that (= + -|-) comes 

before the beginning time of the sale (i.e., ^ < ^g)* 

According to the Theorem 4 in Lev and Veiss (1990), we note that all of 

the orders placed from to (excluding the time point <j) are of the 

same size. Furthermore, we assume that the inventory of the last order 

before is depleted at time point (i.e., t^< Let us 

denote the integer number of the equal-size orders from to by n. Me 

note that the possible optimal strategy for the buyer from t to t is X c 

either to place a special order at or to place a special order to 

meet the exact demand from t to i and an additional special order ^ at 
«u c S 

i . Figure 3 illustrates these two possible optimal strategies as well as 
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Do not respond to the sale 

Respond to the sale 

Figure 3. The case for i  
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the "Non-Response" policy for the buyer to follow. Throughout the rest of 

the paper, we will denote the strategy of placing a special order 0 at t 
S X 

as "One Special Order Policy" while the strategy of placing a special 

order to meet the exact demand from to and an additional special 

order ^ at i as "Two Special Orders Policy". The following two O C 

subsections will investigate these two possible optimal strategies. 

5.1 One Special Order Policy 

In this subsection, we investigate the strategy of placing n 

equal-size orders from to and a special order right at t^. As in 

the preceding sections, we will employ the "Non-Response" policy as the 

h benchmark. By considering the duration from to + ~j^) j 

easily obtain the cost saving of the "One Special Order" policy over the 

"Non-Response" policy as follows. 

Maximize = [-j— + {t^ - t^]]{PR + V 2CRFF ) - nC - PR{t^ -

iPHK- i(r- <')f 
C- (P- (14) 

subject to: t, < t < t C/ 6 

n is an integer 

The above objective function 6^ is for the case where there is no regular 

EOQ replenishment point during the sale. If there is a regular EOQ 

replenishment point during the sale, the the objective function becomes as 

follows. 
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II Ij -Ij 
Maximize 6^ = i-^)[iP-d)R + ̂ J2CR{P- d)F\ + 

RPF(t_ - ^ 
{PR + ̂ rmFT) - nC - PR(t^-t^) ^ 

fyP-d)F 
- C- ^ s (15) 

Ve note that the difference between objective functions and 6^ is 

constant. Therefore, the first derivatives of and 6^ are identical. 

From the maximization of the above problems, the following first 

derivative with respect to 1}^ can be easily obtained. 

5<?4 pĵ   ̂

-nrr = 1 I— O O 

By setting equation (16) to zero, the optimal 0 can be obtained as O 

follows. 

/J* _/l*^ _ dR + V 2l'RFF _ PR + ̂  2CRFF R 
hSA ~ {P - d)F - {P - d)F r 

We note that the expression of B in equation (17) is identical to the o 

special order quantity shown in equation (5). Ve also note that the 

special order quantity is independent from the other decision variables n 

and t . 
X 

Given t , the determination of the integer decision variable n can be U/ 

treated as a finite horizon EOQ problem which is proposed and solved by 

Schwarz (1972). From Schwarz (1972), we note that the optimal solution 

for n, given t^, is n{t^) = [ 0.5 + (0.25 + where [ Y J 

is the largest integer less than or equal to F. Throughout the rest of 

this paper, we will denote the optimal solution of n from t to t , t to 0 X 0  

ij, and to by n(^j)j "(^g)> respectively. Moreover we 
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note that < "(^g) equal to either n(^j) or 

^ (this is due to the assumption that the sale period is less than 

one regular EOQ replenishment cycle). 

Given the integer variable n, we can have the first derivative with 

respect to as follows. 

de, de^ (t_ - t^RPF 
-̂  (= ̂ ) = + rnUFT) - / PR (18) 

X X 

By rearranging equation (18), we can easily obtain the following relation. 

(19) 

The economic implication of relation (19) states that the optimal solution 

of t will be the regular EOQ replenishment point during the sale. fJU 

Therefore, if there is a regular EOQ replenishment point during the sale, 

then the optimal t occurs at the regular EOQ replenishment point during 

the sale. On the other hand, if there is no regular EOQ replenishment 

point during the sale (i.e., and are within the same EOQ regular 

replenishment cycle), then the optimal solution of occurs at or 

This can be easily observed from Figure 4 where we plot cost saving as y 

axis and as x axis under the integer constraint of the decision 

variable n. In Figure 4, the maximum cost saving occurs at the regular 

EOQ replenishment points. In order to determine the optimal solution of 

Hh - to) 
t , we define n by [ ji and n = n + 1. By observing Figure 4 
X - I/q 

carefully, we can conclude the decision-making rule shown in Exhibit 2 for 

the case that only one special order is allowed during the sale. 
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TJ:I U 0 \ I \ 6 0 I ii_ 1 6 0 I / 0\ J ^ \ 6 0 \ 
If [ y, then y("1") " " I- IJ 

'0 

Else 

If n(ig)=n (which implies n(i^)=n)j then and n*=n. 

Else if n(<i)=n (which implies n(i.)=n)5 then i*=t. and n*=h 0 c 2« 6 

Else 

if n) > ^4(^e» «) then and n*= n, 

else = < and n = n. 
X e 

Exhibit 2. The decision-making rule for "One Special Order" Policy 

5.2 Two Special Orders Policy 

In this subsection, we will examine the strategy of placing n 

equal-size orders from to a special order R{t^ - t^) to meet the 

exact demand from to < and an additional special order 0 at f . As in X c o c 

the preceding sections, we will employ the "Non-Response" policy as the 

h  benchmark. By considering the duration from to + -j—), we can 

easily obtain the cost saving of the "Two Special Orders" policy over the 

"Non-Response" policy as follows. 

RPF{t-tS^ 
Maximize ffg = [-j- + + V 2CRPF) - nC - — 

-  ' i " '  -

(llir-d)F 
- C-  ̂ s (20) 

subject to: ^ 

n is an integer 
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As in "One-Special Order" policy, we note that the above objective 

function is for the case where there is no regular EOQ replenishment point 

during the sale. If there is a regular EOQ replenishment point during the 

sale, the the objective function becomes as follows. 

II g -g 
Maximize 6^ - d)R + y/2CS{F- d)F\ + [ 

{PR + yT^UIFT) - nC - PSit^-t^) 

S{P-d)F{t-tJ^ 
. c 5-̂ -̂  - - c- iP-d)g  ̂

lp{p-d)p 

2 

We note that the difference between objective functions 6q and 6^ is 

constant. Therefore, the first derivatives of Sq and are identical 

From the maximization of the above problems, the following first 

derivative with respect to Q can be easily obtained. s 

(21) 

5̂ 6 dĜ  PR + J mPF 
-gy— - J J 
'5 'S 

By setting equation (22) to zero, the optimal Q can be obtained as o 

follows. 

n* n* _ dR + V ICRFF _ PR + -J 2CRPF R 
h66 '>sG7-''s^ - (P - d)F ' (P - d)F T 

= 17̂  

¥e note that the expression of in (23) is identical to the special 

order quantity shown in (5). We also note that the special order quantity 

is independent from the decision variables n and t . 

For the computational convenience, we 'jill ignore the two constraints 

that and n is an integer at the beginning and then reconsider 
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them as we proceed. In such a case, we can have the following derivatives 

with respect to and n. 

dSf. dGy RPF(t-t) 
r-̂  - *xW- i)f * Hf-d) (24) 

X X 

36, se, 
"55 35- = - « * ^ PS) 

By setting equation (25) equal to zero, the following relation can be 

easily obtained. 

, 2CR xO.5 
0̂ = ("PT") = n (26) 

dGf, 
By substituting (26) into (24), it can be easily found that 

X X 

dSrj 
< 0. This implies that the possibility for -ST- (= -m->'" 

If n{t^) = n{tjj) = n, then a special order to meet the demand 

from t, to t , and an additional special order at t . 
U C O V 

Else let n = h, calculate t„ 
X 

if < K and n{t) = n, then a special order to meet the 0 J/ G jj 

demand from t* to t , and an additional special order at i . 3 / 6  o  €  

else 

if then a special order to meet the demand 

from to and an additional special order at 

else the strategy of placing two special orders during the 

sale is never optimal. 

Exhibit 3. The decision-making rule for "Two Special Orders" policy 
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dG„ 
when n = n (because n = n will result in -W (= TT") < " = 

2> X 

n, by rearranging equation (24), we can easily obtain i as follows. 3/ 
ft^{p - d) * (fftyi) - d 

f ( P  +  ( f / n )  -  d )  

Me also note that t should meet the constraint t, < t < t and nfZ ) = X 0 ~ X e ^ X' 

n. In summary, we can conclude the decision-making rule shown in Exhibit 

3 for the case of two special orders during the sale. 

5.3 Decision Process for the sett < < tu < t a - 0 0 e 

In this section, we fist consider the case that there is no regular 

" ( h  - '») 
EOQ replenishment point exists during the sale (i.e., [ ^ — J = L 

S{t - t ) 
J). According to Exhibit 2 and Exhibit 3 in the sections 5.1 

and 5.2, the potential optimal policies can be classified into the 

following five mutually exclusive and exhaustive cases. Among these five 

mutually exclusive and exhaustive cases, the first two cases are "One 

Special Order" policies, the third and the fourth cases are "Two Special 

Orders" policies, and the fifth case is "Non-Response" policy. 

Case 1): n{t^) equal-size orders of n(t~) demand from 

to ij, then a special order at ty 

Hie -
Hi J 

Case 2): n{t ) equal-size orders of — to meet the demand from 

to to then a special order at 
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^{h - ^o) 
Case 3): equal-size orders of ^— to meet the demand from 

^0 ^6' ̂  special order of £{t^ - to meet the demand from 

<, to < , then an additional special order Q at t  .  U O & 
i { t  -  t  )  

Case 4): n{t^ equal-size orders of «(!"") demand from 

t  to t  ,  a special order of R { t  - t j )  to meet the demand from (j 4j 6 X 

"to "tlien an additional special order Q at i . 
X c S c 

Case 5); "Non-Response" policy. 

By employing the Exhibit 2 and Exhibit 3, we can have the decision process 

tree as shown in Diagram 1. 

Ve now proceed to consider the case that there is one regular EOQ 

replenishment point exists during the sale (i.e., [ S^ ̂J). 

According to Exhibit 2 and Exhibit 3 in the sections 5.1 and 5.2, the 

potential optimal policies can be classified into the following three 

mutually exclusive and exhaustive cases. Among these three mutually 

exclusive and exhaustive cases, the first case are "One Special Order" 

policy, the second and the third are "Two Special Orders" policies. In 

this case, "Non-Response" policy will never be an optimal policy. 

'K-K) 
Case A): [ jj equal-size order of Ij^ to meet the demand from to 

a 
where =^^+1 n a- special order at 

'o 
- ^o) 

Case B): equal-size orders of ^ — to meet the demand from 

to /j, a special order of S{t^ - t^) to meet the demand from 

H ^e' ^ additional special order at 
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1 special order 1 or 2special orders check * Yes No 

Yes Yes 

No 
Given n = « 

obtain fx No 

Yes £ tx <t>  ̂ No 

Yes Yes 
check 

Yes No 

Yes 
check ***S—Ma 

CS4 > CS2, 

• \*e'W ̂  

: (u-tbi 2CRPF - C I ^^b-tofRPF 
2(n+l) 2n 

...:fc.y<a:V5Z 
R 

o : check CSi > 0 or not, if Yes ease i  is optimal, if not "Non-Response" is optimal 

Diagram 1. Decision process - no regular EOQ replenishment point 
during the sale 
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R{t - i ) 
Case C): n{t^ equal-size orders of nfT") demand from 

^ special order oi i{t - t-) to meet the demand from O tv € 

< to t , then an additional special order at / . 
X € «S G 

By employing the Exhibit 2 and Exhibit 3, we can have the decision process 

tree as shown in Diagram 2. 

6. Nunerical Results 

In this section, we demonstrate that all eight cases for the set that 

(five for the case that no regular EOQ replenishment 

point during the sale and three for the case that one regular EOQ 

replenishment point during the sale) can be optimal policies with only 

or changes. Example 1 is designed to study the case that there is 

no regular EOQ replenishment point during the sale while Example 2 is to 

study the case that there is one regular EOQ replenishment point. The 

following values of the parameters are employed for both Example 1 and 

Example 2i P = 100, R = 800, C = 8000, F = 0.2. Ve note that the economic 

order quantity = 800 and the replenishment cycle is 1. 

Example 1. Let and vary within the range of 5 < < 6 and 

vary from 1 to 5. The results is shown in Table 1. 

By examining Table 1 carefully, we make the following interesting 

observations for Example 1. 

1) When and are sufficiently large (e.g., t^) = (5.60, 5.75), 

(5.60, 5.90) or (5.75, 5.90)), the policy of Case 3 is optimal 

regardless the values of t^. 
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Start 

No 

No Yes No 
check * 

Yes Yes No 

Yes No check * check **, 

No Yes 

Given n  =  n  
obtain rr 

n((f) =n 

check 
Yes, 

Qs-^ Q}-Q^ 

a-V 

: case i is optimal 

Diagram 2. Decision process - one regular EOQ replenishment point 
during the sale 
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Table 1. No regular EOQ replenishment point during the sale 

h te to = 2 

II = ̂  II 

5.15 5.30 1 11955 1 11940 1 11910 1 11820 3 8080 
5.15 5.45 1 11955 1 11940 1 11910 1 11820 3 9580 
5.15 5.60 2 13297 2 13282 2 13252 2 13162 3 10720 
5.15 5.75 2 15763 2 15748 2 15718 2 15628 3 11500 
5.15 5.90 2 17905 2 17890 2 17860 2 17770 4 12173 
5.30 5.45 1 11820 1 11760 1 11640 1 11280 3 9580 
5.30 5.60 1 11820 1 11760 1 11640 3 11360 3 10720 
5.30 5.75 2 13162 2 13102 2 12982 2 12622 3 11500 
5.30 5.90 2 15628 2 15568 2 15448 2 15088 3 11920 
5.45 5.60 3 11744 3 11680 3 11573 3 11360 3 10720 
5.45 5.75 3 11900 3 11875 3 11833 3 11750 3 11500 
5.45 5.90 2 12937 2 12802 2 12535 2 12132 3 11920 
5.60 5.75 3 11900 3 11875 3 11833 3 11750 3 11500 
5.60 5.90 3 11984 3 11980 3 11973 3 11960 3 11920 
5.75 5.90 3 11984 3 11980 3 11973 3 11960 3 11920 

Table 2. One regular EOQ replenishment point during the sale 

tb te to=\ to-2 

II 

to = 5 

5.25 6.15 B 10843 B 10801 B 10718 B 10468 C 6483 
5.40 6.15 B 8830 B 8723 B 8510 B 7870 B 6270 
5.40 6.30 B 10648 B 10541 B 10328 B 9688 B 8088 
5.55 6.15 B 6683 B 6603 B 6468 B 6198 B 5388 
5.55 6.30 B 8826 B 8745 B 8610 B 8340 B 7530 
5.55 6.45 B 10644 B 10563 B 10428 B 10158 B 9348 
5.70 6.15 B 4397 B 4362 B 4302 B 4182 B 3822 
5.70 6.30 B 6864 B 6828 B 6768 B 6648 B 6288 
5.70 6.45 B 9006 B 8970 B 8910 B 8790 B 8430 
5.70 6.60 B 10824 B 10788 B 10728 B 10608 B 10248 
5.85 6.15 A 3200 A 3200 A 3200 A 3200 A 3200 
5.85 6.30 B 4506 B 4497 B 4482 B 4452 B 4361 
5.85 6.45 B 6972 B 6963 B 6948 B 6918 B 6827 
5.85 6.60 B 9114 B 9105 B 9090 B 9060 B 8970 
5.85 6.75 B 10932 B 10923 B 10908 B 10878 B 10788 
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2) When - 1, 2, 3, or 4, the optimal policy can be Case 1, Case 2, or 

Case 3. On the other hand, When = 5, the optimal policy is either 

Case 3 or Case 4. 

Also, it can be easily obtained that when d is sufficiently low (e.g., d = 

1), the "Non-Response" policy is optimal. 

Example 2. All the parameter values are the same as Example 1 with the 

exception that the values of and In this case, there is a regular 

EOQ replenishment point occurs at 6 (i.e., < 6 < t^). The 

corresponding results are shown in Table 2. 

By examining Table 2 carefully, we make the following interesting 

observations for Example 2. 

1) Case A is optimal only if both and are sufficiently close to 

the regular EOQ replenishment point during the sale (e.g., t^) = 

(5.85, 6.15)). 

2) When = 1, 2, 3, or 4, the optimal policy is either Case A or 

Case B. On the other hand, when = 5, the optimal policy can be 

Case A, Case B, or Case C. 

Furthermore, we note that the following properties can be easily verified 

by way of simple calculus. 

Property 1. — < 0 and ^ f < 0 for all cases. 
~ dti a 

Property 2. — > 0 for all cases. 
e 

Property 1 implies that the cost saving will increase when t„ is 
Ui 
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decreased. That is, if the buyer is informed the sale earlier, then the 

cost saving will be larger. In addition, the difference in the increase 

of the optimal cost saving decreases as decreases. 

Meanwhile, Property 2 implies that the duration of the sale 

increases, the optimal cost saving for the inventory policies will 

increase or remain the same. 

7. ConclTisions 

In this paper, we constructed and analyzed an EOQ-type model for a 

buyer who was just informed of an announced temporary price decrease. For 

such a buyer, optimal inventory policies were derived by comparing cost 

savings of various cases. By analyzing the optimal inventory policies, 

several managerial insights were obtained. In particular, as the 

announcement time of the sale t is getting earlier (i.e., i is getting 
w (L 

smaller), the optimal cost saving will increase or remain the same. On 

the other hand, as the duration of the sale increases, the optimal cost 

saving will increase or remain the same. 

Several extensions can be made to enhance the basic models of this 

paper. For examples, as discussed in section 1 Introduction, it is 

assumed that the sale period is less than one regular EOQ cycle. By 

relaxing this assumption and allowing the sale period is greater than one 

regular EOQ model, interesting models that augment the models in this 

paper can be developed. Another class of extensions can be made with 

respect to the option of disposal. Implicitly, in this paper, it is 

assumed that the buyer does not have the option to dispose his on-hand 
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inventory when the temporary sale is announced. It would be interesting 

to investigate the integration of inventory and disposal policies for 

announced temporary price decrease. Ve believe that such extensions will 

improve the applicability of inventory models in practice. 
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Appendix. Proof of Lena 1 

Le—a 1. The optimal time point at which the special order is placed 

for the set A: t „ < t .  < t „ <  t „  is at t„. a 0 e - 0 e 

Proof: 

Ve will denote the on-hand inventory level at by q  (i.e., q  =  q  -  i { t ^  

- ^g)). In addition, we define y to be the time interval between t^ and 

the time point at which the special order occurs. Also, we will denote 

the inventory level at (ij + y) after the special order (including the 

inventory before the special order) by Figure 5 illustrates the 

"Response" policy and "Non-Response"policy. In order to measure the cost 

saving of the "Response" policy over the "Non-Response" policy accurately, 

the total cost will be calculated from t ^  to (ij +  y  +  -j—) (see e.g., 

Tersine, 1994). The total cost from the time point to the time point 

L 
[ t e  +  y  +  -J—) for the "Response" policy, C ^ ,  can be expressed as 

follows. 
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Do not respond to the sale 

Respond to the sale 

Figure 5. The general behavior for the case ^ 



www.manaraa.com

73 

h =  ̂('z - 9 ̂  - <1) *(1,- 9* W( ) 

(K-'t* tyfv - d)F 
{P - d)F + —^ 2J + C (A.l) 

The corresponding total cost for the same duration for the "Non-Response" 

policy, is given by 

" 2 o P  L -  q  +  S y  
^SR ~ zR— ̂  jf ^ V 26'^^/" ) (^*2) 

From the equations (A.l) and (A.2), the cost saving of the "Response" 

policy over the "Non-Response" policy is given by 6^ = ~ 

objective now is to find the optimal y which will maximize 6^. Namely, 

Maximize 6^ = C^2 ~ (A-3) 
y  

From the maximization of the above problem, the following first 

derivatives can be easily obtained. 

= iPR+,mFF) - RiP-d) + ll̂ iP-d)F- 2{q-Ry){P-d)F 

- {lj/q^Ry){P-d)F (A.4) 

By rearranging (A.4), we can obtain the following expression. 

4^ = dt + (?-%))" + Cs-'</)if > 0 (4.6) 

From (A.5), we note that dGJdy > 0. This implies that the cost saving 

will increase when y is increased. That is, if the buyer places a special 

order during the sale, his optimal strategy is to place the special order 

as late as possible. In such a case the optimal time point to place a 

special order is at time point t^. 
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CHAPTER III. 

OPTlUZmOM CRITERIA FOR mENIQRY-INVESTIIENT Hi S£Tl}P OPERATIONS 

POLICIES: PROFn VS. RETIM ON INVESTIENT 

A paper to be submitted to Decision Sciences 

Cheng-Kang Chen and K. Jo Min 

Department of Industrial and Manufacturing Systems Engineering 

Iowa State University, Ames, lA 50011 

ABSTRACT 

We construct and analyze optimal policies for inventory and 

investment in setup operations under profit maximization and under return 

on investment maximization. Under a general functional form of investment 

in setup operations, we derive the optimality conditions under profit 

maximization and under return on investment maximization. By comparing 

and contrasting the optimality conditions, several interesting economic 

implications are obtained. Also, for two specific functional forms of 

investment in setup operations (linear and hyperbolic), the closed-from 

optimal solutions and the decision making rules are derived. From the 

solution and rules, additional economic implications are obtained. 
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INTRODUCTION 

In this paper, we construct and analyze inventory and investment in 

setup operations policies under profit maximization and return on 

investment maximization for decision makers of inventory systems. Ve 

assume that the option of investing in setup operations is available. Ve 

also assume that the return on investment is the ratio of the profit to 

the sum of the average inventory investment and the capital investment in 

setup operations. Under these assumptions, we formulate the inventory and 

investment in setup operations policies under both profit maximization and 

return on investment maximization and derive the optimality conditions-

Also, several interesting economic implications at the optimality 

conditions are obtained. The primary contributions of our paper are: 1) A 

unique analytical formulation to examine the return on investment of the 

option of investing in setup operations, 2) Several interesting economic 

interpretations for the optimality conditions under profit maximization 

and return on investment maximization, and 3) Closed-from optimal 

solutions and the decision making rules when the setup cost function is 

linear or hyperbolic. 

The idea of employing profits as a performance measure of inventory 

models has been explored as early as the 1950's (see e.g., ¥hitin [16] or 

Smith [14]). Ladany and Stemlieb [6] not only uses the profit levels as 

the performance measure, but also provides insights on relations among 

price, cost, and demand by making the demand dependent on the price and 

the price dependent on the cost and a fixed mark-up. Schroeder and 

Krishnan [13] proposes an inventory model under an alternative 
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optimization criterion of return on investment inventory maximization. 

Horse and Scheiner [8] investigates inventory models under three 

alternative criteria which are cost minimization, return on investment and 

residual income. Subsequently, Arcelus and Srinivasan [1] [2] compare and 

contrast profit maximization vs. return on inventory investment 

maximization with respect to constant elasticity demand functions. Also, 

Rosenberg [12] compares and contrasts profit maximization vs. return on 

inventory investment with respect to logarithmic concave demand functions. 

In his analysis, under linear demand functions, closed-form optimal 

solutions are employed for the return on inventory investment model while 

an examination of optimality conditions and an iterative procedure (e.g, 

the Newton-Raphson method) are employed for the profit maximization model. 

In contrast to the iterative procedure under linear demand fimction for 

profit maximization model proposed by Rosenberg [12], Chen and Min [4] 

derives the optimal closed-form solution for both profit maximization and 

return on inventory investment maximization under linear demand functions. 

Also, a comprehensively comparative analysis is presented in Chen and Min 

[4] for both profit maximization and return on inventory investment 

maximization models. 

Recently, the superiority of an inventory management system called 

Zero Inventory (often synonymous with Kanban and Just-in-Time; see e.g., 

Zangwill [17]) has attracted a great deal of attention not only from 

industries but also from the academia. The essential philosophy of Zero 

Inventory management system is that the inventory results from operational 

inefficiencies. Hence, the higher the level of inventory, the greater the 
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operational inefficiencies. From this perspective, it is well known that 

several Japanese and American producers strive to reduce the level of 

inventory as much as possible. In order to reduce the level of inventory, 

numerous experts in industry and academia find it essential to reduce the 

setup cost of production. In Porteus [9], such efforts to reduce the 

setup cost are mathematically incorporated by introducing an investment 

cost function of reducing the setup cost to undiscounted EOQ models. For 

the cases of logarithmic investment cost functions and power investment 

cost functions, his models demonstrate decreased operational costs when 

the setup cost is reduced. Porteus [10] extends Porteus [9] to the cases 

of discounted EOQ models. Billington [3] formulates a model of which 

setup cost is a function of capital expenses and investigates the 

relations among holding, setup, and capital expenses. Hong, Xu, and Hayya 

[5] proposes a dynamic lot-sizing model of which setup reduction and 

process quality are functions of capital expenditure. Ve note that, in 

all these papers, the performance criterion has been the minimization of 

operational costs (as compared to the maximizations of profit and return 

on investment in our models). Ve also note that there have been few 

analytical model that examines the return of the investment in improving 

the setup operations. 

In this paper, we construct and analyze inventory and investment in 

setup operations policies by employing the profit maximization and the 

return on investment maximization as the performance criteria. By 

treating inventory and capital expenditure in reducing setup operations as 

investments for the purpose of generating profits, the return on 
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investment is defined to be the ratio of profit per unit time to the sum 

of the average inventory investment per unit time and the investment in 

reducing setup operations per unit time. The decision variables of our 

models are the economic order quantity and the desired level of the 

investment in reducing setup operations. We formulate the models and 

derive and interpret the optimality conditions for general setup cost 

function. For specific cases of linear and hyperbolic setup cost 

functions, it is shown that the optimal investment decisions for the 

linear setup cost case is more sensitive than the optimal investment 

decisions for the hyperbolic setup cost case. 

The rest of this paper is organized as follows. Ve first formulate 

the inventory and investment in setup operations models and derive and 

interpret their optimality conditions. Next, for the specific cases of the 

linear setup cost and the hyperbolic setup cost, the optimal closed-form 

solutions are obtained and several interesting managerial insights are 

presented. Finally, summary and concluding remarks are made. 

DEFINITIONS AND iSSmPTIONS 

Throughout this paper, for the decision maker of the inventory 

system, the following notations and definitions will be employed. 

Q: the order quantity per order. Unit: units. 

c: the variable cost per unit, i.e., the unit cost. Unit: $/unit. 

i: the inventory holding cost expressed as a fraction of the unit 

cost per unit time, excluding the opportunity cost of funds tied 

up in inventory. Unit: 1/unit time. 
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I; the inventory holding cost expressed as a fraction of the unit 

cost per unit time, including the opportunity cost of funds tied 

up in inventory. Unit: 1/unit time. 

ip^: the opportunity cost (or the cost of capital), I = i + i^^. 

Unit: 1/unit time. 

K: the amount of capital investment in setup operations (to be 

invested per unit time). < K < Unit; $/unit time. 

S(K): the setup cost per order as a function of K. Unit: $. 

p: the selling price per unit. Unit: $/unit. 

d: the sales quantity per unit time. Unit: units/unit time. 

The basic assumptions of our models are: 1) There are no learning effects 

in setup or production; 2) Shortages or delivery lags is not allowed; 3) 

The sales quantity per unit time as well as the selling price per unit are 

deterministic and constant over time; 4) the setup cost function S(K) is 

strictly decreasing with respect to K. 

PROFIT lAXmZATIQN lODEL 

Given the above definitions and assumptions, we first develop a 

profit maximization model with an option to invest in setup operations as 

follows. The revenue per unit time is given by pd. And the corresponding 

per unit time setup cost, total variable cost, inventory holding cost, and 

the amoTint of investment in setup operations are given by , cd, 

, and K, respectively. The total cost per unit time, TC, is: 

TC = + cd + + K (1) 

And the corresponding profit per unit time, T, is: 



www.manaraa.com

80 

T = pd - . cd - - K (2) 

The objective of the decision maker is to maximize T over Q and K subject 

^min - ̂  - ̂ max' ̂  equivalent standard form (see e.^., Luenberger [7]) 

for this problem is: 

Problem 1: Minimize -r 
Q,K 

s.t. K^i„-K<0 

K - K <0 max -

The corresponding Lagrangian function, L^, is given by = - T + -

K) + AgCK - first order necessary conditions for Problem 1 are: 

9 
-3J- = - S(K)d/Q^ + Ic/2 = 0 

= S'(K)d/q + 1 - + Ag = 0 

(3) 

(4) 

^l('min - «) = 0 (5) 

- W) = » (6) 

A, > 0 (7) 

A2 > 0 (8) 

- K < 0 mm (9) 

K - K <0 max - (10) 

If an optimal solution (Q, K) is such that K = K„. , then the first mm' 

order necessary conditions are reduced to: 

1 = S-(K^jj^)d/(! t 1 > 0, and Aj = 0 (11) 

Ve note that the corresponding second order sufficient condition is 

satisfied for any pair of (Q, K) which satisfies the first order necessary 

conditions. 

On the other hand, if an optimal solution (Q, K) is such that K = 
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^max' first order necessary conditions are reduced to: 

' = '•l = »' ^2 = ^ 0 (") 

We note that the corresponding second order sufficient condition is 

satisfied for any pair of (Q, K) which satisfies the first order necessary 

conditions. 

Thus far, we have examined the optimality conditions of the boundary 

optimal solutions (in the sense that K = K . or K = K ). Ve now proceed ^ ^ mm max-' ^ 

to examine the optimality conditions of the interior optimal solutions (in 

the sense that K„. < K < K„„„). If an optimal solution (Q, K) is such mm max' ^ / 

that K e first order necessary conditions are: = 

^2 = 0, and 

^ = SCKjd/Q^ - Ic/2 = 0 (13) 

|j = -S'(K)d/(|- 1 = 0 (14) 

From (13) and (14), the Hessian matrix of T, is given by 

H = 
T 

2S(K)d/Q^ S'(K)d/Q^"' 

S'(K)d/Q2 -S"(K)d/Q 
(15) 

From (15), the corresponding second order sufficient condition becomes 

2S(K)S"(K) > (S'(K))^ (16) 

Ve note that the first order necessary conditions and the second order 

sufficient condition of the profit maximization problem are equivalent to 

those of the cost minimization problem. Finally, we note that both 

boundary and interior solutions are only local optimal solutions. Because 

the functional form of S(I) is not specified in our model (i.e., broad 

classes of functional forms are admissible), the issue of global 

optimality is difficult to address. The extensive analyses of local 
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boundary and interior optimal solutions in later sections, however, are 

valuable because: 1) the global optimal solution is an element of the set 

of local optimal solutions, and 2) the global optimal solution may change 

from one local optimal solution to another local optimal solution even 

with a minor perturbation in the values of parameters. 

REHJRN ON INVESTMENT lAimzmoN IODEL 

Thus far, we have developed a profit maximization model and 

characterized the corresponding optimal solutions. Let us now develop a 

return on investment maximization model. In the literature of inventory 

theory, there have been numerous papers on the return on inventory 

investment, e.g., Schroeder and Krishnan [13], Morse and Scheiner [8] 

Arcelus and Srinivasan [1] [2], or Rosenberg [12]. In these papers, the 

inventory is viewed as a capital investment for profits. From this 

perspective, the return on inventory investment is defined to be the ratio 

of the profit per unit time to the inventory investment per unit time. An 

additional distinction of the return on inventory investment is that the 

inventory holding cost rate I is now replaced by i, which is exclusive of 

opportunity costs. The reason for this change is that, because the 

decision maker wants to maximize the return on investment, it is no longer 

appropriate to pre-specify a return on capital in the inventory holding 

cost. 

In the return on inventory investment models, the inventory is viewed 

as a capital investment for profits. Let us now suppose that K is 

invested in setup operations per unit time. Then, this capital expenditure 
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must also be viewed as an investment for the same purpose. That is, both 

inventory investment and investment in setup operations must be viewed in 

the same way based on their profitability. Hence, in addition to the 

inventory investment per unit time of cQ/2, if a per unit time capital 

investment of K is made for the setup operations, the total capital 

investment per unit time is equal to cQ/2 + K. The corresponding profit is 

given by 

P = pd - - cd - - K (17) 

Therefore, the return on combined capital investment, R, is given by 

R = (pd - . cd - . K)/(-^ + K) (18) 

The objective of the decision maker is to maximize R over Q and K subject 

to Kin ̂  ^ W- An equivalent standard form (see e.g., Luenberger [7]) 

for this problem is ; 

Problem 2: Minimize -R 

* " ^Max - " 

The corresponding Lagrangian function, Lj^, is given by = -R + -

K) + first order necessary conditions for Problem 2 are: 

^ = - [(S(K)d/Q2 - ic/2)(cQ/2 + K) - cP/2]/(cQ/2 + K)^ = 0 (19) 

n 
= - ((-S'(l!)d/I! - l)(c(!/2 + K) - P]/(cQ/2 + if 0 (20) 

^ » (21) 

"2^^ - W = " (22) 

I'LL 0 (23) 

2̂ > 0 (24) 
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Kir, - K < 0 (25) mm ^ ' 

K - < 0 (26) max - ^ ' 

If an optimal solution (Q, K) is such that K = then the first 

order necessary conditions are reduced to: 

= cP/2, ̂ 2= 0, and 

"l = ^ + P]/(cl!/2 + > 0 (27) 

Ve note that the corresponding second order sufficient condition is 

satisfied for any pair of (Q, K) which satisfies the first order necessary 

conditions. 

On the other hand, if an optimal solution (Q, K) is such that K = 

K , then the first order necessary conditions are reduced to: IDaJC 

"2 = • W - ^ ° (28) 

Ve note that the corresponding second order sufficient condition is 

satisfied for any pair of (Q, K) which satisfies the first order necessary 

conditions. 

Thus far, we have examined the optimality conditions of the boundary 

optimal solutions (in the sense that K = K . or K = K „ ). Ve now proceed ^ ^ mm max' ^ 

to examine the optimality conditions of the interior optimal solutions (in 

the sense that < K < If an optimal solution (Q, K) is such 

that K G ^max) J first order necessary conditions are: 

= (i2 = 0, and 

U = [(S(I)d/Q2 - ic/2)(cq/2 + K) - cP/2]/(cl!/2 + K)^ = 0 (29) 

U = [(-S'(K)d/Q - l)(c?/2 + I) - P]/(c(/2 t K)2 = 0 (30) 

Ve can obtain the Hessian matrix of R evaluated at a solution (Q, K) of 
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equations (29) and (30), as below. 

r.3 

h = cQ/s'i K 

i2 . 

(31) 
2S(K)d/q'' -S'(K)d/Q' 

.-S'(K)d/Q^ S"(K)d/q . 

From (31), the corresponding second order sufficient condition becomes 

2S(K)S"(K) > (S'(K))2 (32) 

Ve note that the functional forms of the second order sufficient 

conditions of both Problem 1 and Problem 2 are identical (even though the 

optimal values of K may be different). 

OPRMILTY ANALYSIS 

In this section, we analyze the optimal solutions and derive 

interesting managerial insights. First, we examine the interior optimal 

solution cases, followed by the boundary optimal solution cases. Next, we 

investigate the relative magnitudes of optimal solutions under profit 

maximization and under return on investment maximization. Let (Q^, K^) and 

(QR, KR) denote the optimal solutions under profit maximization and under 

return on investment maximization, respectively. 

Ve begin our analysis by examining the profit maximization model. By 

rearranging the optimality condition (13), we have 

S(K,)d/g, = Izyi (33) 

The economic interpretation of (33) is that the setup cost per unit time 

is equal to the inventory holding cost (including the opportunity cost) 

per unit time at the optimality. Also by rearranging the optimality 

condition (14), we have 

-S'(K^)d/Q^ = 1 (34) 
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We can view -S'(K^) as the marginal setup cost saving. Also, we can view 
Q17 
^ = 1 as the marginal investment per unit time in the setup operations. 

Hence, at the optimality, the marginal setup cost saving per unit time is 

equal to the marginal investment in setup operations per unit time. 

Let us now examine the return on investment maximization problem. By 

rearranging the optimality condition (29), we have 

S(Kj)d/«K = icQj/2 + (cl!g/2)R (35) 

The economic interpretation of (35) is that, at the optimality, the setup 

cost per unit time is equal to the inventory holding cost (excluding the 

opportunity cost) per unit time plus the portion of the profit per unit 

time which is contributed by the inventory investment. 

Also by rearranging the optimality condition (30), we have 

-S'(Kj^)d/Qj^ = 1 + R (36) 

The economic interpretation of (36) is that, at the optimality, the 

marginal setup cost saving per unit time is equal to the marginal 

investment per unit time in the setup operations plus the return on 

investment per unit time. That is, the marginal setup cost saving per unit 

time is strictly larger than the marginal investment per unit time in the 

setup operations at the optimality. 

In addition, by rearranging terms in the optimality conditions (29) 

and (30), we can obtain the following expression for 

Qj^ = (2S(K) - S'(K)K)/(p - c) (37) 

Ve note that this is a generalized expression of Q = 2S/(p-c) in Schroeder 

and Krishnan [13] where the option to invest in the setup operations is 

not available. 
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Ve now proceed to examine the boundary optimal solution cases. From 

(11), when (Q^, K,) = ((2S(K^i^)d/(Ic))''- = , then -S'(K„i^)d/(|^ < 1. 

i.e., the marginal setup cost saving per unit time is less than or equal 

to the marginal investment per unit time in the setup operations. Also, 

from (12), .hen (Q,, K,) = ((2S(K„^)d/(Ic))»-5, K„^), then-S-(K^^)d/g 

> 1. i.e., the marginal setup cost saving per unit time is greater than or 

equal to the marginal investment per unit time in the setup operations. 

c + (c^+4E, „.„cK . 
In addition, from (27), when (Qp^, K^) = ( ^ ^ 

Smin) ®l,«in = ^ ^ 1 * 

R. i.e., the marginal setup cost saving per unit time is less than or 

equal to the marginal investment per unit time in the setup operations 

plus the return on investment per unit time. Also, form (28), when (Q^, 

c + (c^+4E, ^)^-® 
%) = ( 2E^c ' ' W' ®l,max = 

pd - cd - K + iK 
} then "S'(Kjjjg^)d/Qjj^ > 1 + R. i.e., the marginal 

setup cost saving per unit time is greater than or equal to the marginal 

investment per unit time in the setup operations plus the return on 

investment per unit time. 

LINEAR S£Tl]P COST CASE 

In this section, we consider the case that the setup cost has a 

linear relation to the amount of investment for setup operations, i.e., 

S(K) = tt - /3K (see e.g., Billington [3]), where a and are positive 

constants and a is the upper bound of the setup cost. For the profit 
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maximization decision maker, the objective function and the constraints 

can be described as follows. 

Minimize -T = -pd + + cd + + K 
Q, K ^ 2 

s.t. -K + < 0 

K - < 0 max -

For the return on investment maximization decision maker, the objective 

function and the constraints can be described as follows. 

Minimize -R = -pd ((Q-^)d/q) cd + (icQ/2) ̂  K 
Q, K K + (cQ/2) 

s.t. -K + K . < 0 mm -

K - < 0 max -

The corresponding boundary and interior solutions which are derived from 

the first order necessary conditions under both profit maximization and 

return on investment maximization are summarized in Table 1. Moreover, in 

Table 1, we also present whether the second order sufficient conditions 

are satisfied or not at the solutions, which are obtained from the first 

order necessary conditions. 

From Table 1, we note that, for the linear setup cost case, the 

interior points are never optimal. The optimal solutions for both profit 

maximization and return on investment maximization always occurs at the 

boundary points. Hence, the optimal investment decision for setup 

operations under linear setup cost is either or regardless of 

the choice of optimization criterion. By comparing the objective function 

values evaluated at K and K „ under both profit maximization and mm max ^ 

return on investment maximization, the following decision-making rules can 

be developed. 
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Boundary Solutions Interior Solutions 

K Q s.o.s.c. K Q S.O.N.C 

Profit 
Maximization 

ICmln 01* ICmu y 2(a-|iK)d 
satisfied 

2a-dlcp' 

2p 
dp not 

satisfied 

ROI 
Maximization ICqjiji Or satisfied 

2a-Q(p-c) 

P 
not 

satisfied 

ROI 
Maximization ICqjiji Or 

c+V c^+4AicK 
2AiC satisfied 

2a-Q(p-c) 

P 
-Ai+V A?+2adA3 

A3 
not 

satisfied 

00 <o 

Table 1. The solutions for linear setup cost case 
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K - K- a - 3K • a - 8K 
Rule 1. If Ic < 'm— and — —!12_ > ——5H. 

"i.min - V,max 

then K = Kp = K . . T n mm 
K - K . a - BK . a - BK 

Rule 2. If Ic > — and —5—5^ < ^ — 
- %,mBx 

then K = = K „ . 
T R max 

K  - K -  a  -  3 K  •  a  -  3 K  
Rule 3. If Ic < M and / 

m-iTi ^<r mov fl fl 'x,min 'r.rnax 
? 

then = K . and K,, = K„„^. T mm K max 
K - K . a - 8K . a - 31 

Bale 4. If Ic > ••" ••"— and —,,—SiS- > ——!!H_, 
1r.min " V.,ax Qj 

then K = K and K„ = K_. . T max K. mm 
2d(o-)9K . ) t-

We note that, in the above statements, = ( r- ) ' , Q, ' ' ̂T,mm ^ Ic ^ ' ̂T,max 

2d(fl-M ) n K c + (c^+4A. . cK • / iD3iX n 15mill mill J n 
= ( Ic ' ' = 5I^c-^ ' 'R.max = 

c + (c^+4A, cl pd - cd - K . t IK . l,max max-* „i. » ^ mm mm __j 
sip-" • *l,min 2(a - /<]t^ Jd 

- 'max ̂  
*l,max = Ha - /(R^)d ' 

From these decision-making rules, we note that the combination of the 

optimal investment decisions for setup operations under profit 

maximization and return on investment maximization are among the following 

four cases: 1) = Kj^ = 2) = Kj^ = 3) Kj^ = 
* * 

and 4) Kj^ = It can be easily observed that, under 

different optimization criteria for the linear setup cost case, the 

optimal investment decisions in the setup operations may be identical even 
* 

though the optimal order quantities Q s are different. For example. Rule 
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1 and Rule 2 result in = Kp = K . and = Kp = K while Q # Qp T 11 mm T K max ^ii 

(i.e., Case 1 and Case 2). On the other hand, the optimal investment 
* 

decisions may be in the opposite directions in the sense that K = K . T mm 

h = Kax = \ax h = W 3 

In order to illustrate the features of the linear setup cost case 

under both profit maximization and return on investment maximization, we 

provide the following numerical example. 

Example 1. Suppose that a = 500, /? = 1, d = 25, 1 = 0.2, c = 100, p = 150, 

K . = 50, and K ^ = 480. mm ' max 

Ve plot the negative profit (-T) surface and the negative return on 

investment (-R) surface in Figure 1 and Figure 2, which show that the 

interior solutions derived from solving the first order necessary 

conditions (i.e., (K^, Q^) = (25, 250) and (Kj^, Qp^) = (16.67, 166.67)) are 

saddle points. By employing the decision-making rules developed earlier 

in this section and Table 1, the optimal solutions can be easily found at 
+ + * 

boundary points (K , Q ) = (480, 7.07) for profit maximization and (Kp, 

Qjj^) = (480, 3.11) for return on investment maximization. In this example, 

the investment decisions are identical for both profit maximization and 
* * 

return on investment maximization (i.e., case 2. even 
* * 

though the optimal order quantities Q s are different (i.e., Q = 7.07 and 

Qj = 3.11). 

We now demonstrate that all of those four cases can exist with only 

one or two changes in values of parameters. To achieve our objective, we 

select the per unit cost c and the sales quantity per unit time d as the 

parameters whose values change. Specifically, we let the per unit cost c 
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increases from 30 to 100 by step size 10 and the sales quantity per unit 

time d decreases from 50 to 15 by step size 5. The results are presented 

in Table 2. 

By examining Table 2 carefully, we make the following interesting 

observations. 

1) ¥hen (d, c) = (50, 30), the optimal investment decisions under profit 

maximization and return on investment maximization are identical at 
* * 

~ "^min ~ corresponds to case 1) even though 
* 

the optimal order quantity under profit maximization (= 86.60) is 

approximately 9.67 times larger than the optimal order quantity under 
* 

return on investment maximization Qj^ (= 8.96). 

2) Vhen (d, c) = (45, 40) or (40, 50) or (35, 60), the optimal 
* 

investment decision under profit maximization is = K = 480 T IDaiX 

while the optimal investment decision under return on investment 
* 

maximization is Kjj^ = = 50 (i.e., this corresponds to case 4). 

3) When (d, c) = (30, 70) or (25, 80) or (20, 90), the optimal 

investment decisions under profit maximization and return on 
* * 

investment maximization are identical at K = Kp = K = 480 (i.e., T It IDaiX 

this corresponds to case 2) even though the optimal order quantities 
* * 
and are different. 

4) When (d, c) = (15, 100), the optimal investment decision under profit 

maximization is = K - = 50 while the optimal investment decision T mm ^ 
* under return on investment maximization is = K = 480 fi.e., K max ^ ' 

this corresponds to case 3). 
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d c K; Qi ITN R; Kr Ok Rr TTr Remark 

50 30 50 86.60 5430.38 4.1218 50 8.96 18.5759 3411.96 K;;=KR = K„,i„ 

45 40 480 15.00 4350.00 5.6154 50 9.36 11.4579 2699.10 K-N^KINAXI KJ^=KINJN 

40 50 480 12.65 3393.51 4.3016 50 10.01 7.0833 2101.75 KJI=KNIAX> KJJ=KNIIN 

35 60 480 10.80 2540.39 3.2000 50 10.92 4.3033 1592.17 K;;=K„,AX;KR=K„I„ 

30 70 480 9.26 1790.39 2.2669 480 2.37 2.9462 1650.25 K; = KR = K„,ax 

25 80 480 7.91 1143.51 1.4756 480 2.55 1.8277 1053.52 K; = KR = K„,ax 

20 90 480 6.67 600.00 0.8076 480 2.93 0.9321 557.11 V* 'V* V ~ — ^max 

15 100 50 25.98 180.39 0.2300 480 4.10 0.2574 155.83 KJI=KININ» KR=KN>AX 

Table 2. Numerical results for linear setup cost case 
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5) Given the other parameters fixed, as the per unit cost c increases and 

the sales quantity per unit time d decreases simultaneously, both the 

optimal profit level under profit maximization and the optimal return 

on investment level under return on investment maximization decrease. 

6) Under the criterion of profit maximization, the higher level of 

profit does not necessarily represent the higher level of return on 

investment. For example, = 5430.38 and = 4.1218 at (d, c) = 

(50, 30), vhile T* = 4350.00 and R* = 5.6154 at (d, c) = (45, 40). 

7) Under the criterion of return on investment maximization, the higher 

level of return on investment does not necessarily represent the 
* * 

higher level of profit. For example, R^ = 4.3033 and Tj^ = 1592.17 at 

(d, c) = (35, 60), while Rj^ = 2.9462 and = 1650.25 at (d, c) = 

(30, 70). 

HYPERBOLIC SETUP COST CASE 

In this section, we consider the case that the setup cost has a 

hyperbolic relation to the amount of investment for setup operations. 

Specifically, we assume that S(K) = where 7 is a positive constant. 

For the profit maximization decision maker, the objective function and the 

constraints can be described as follows. 

Minimize -T = -pd + 2N + cd + + K 
Q, K ^ 

s,t. -K + K . < 0 mm ~ 
K - < 0 

max -

For the return on investment maximization decision maker, the objective 

function and the constraints can be described as follows. 



www.manaraa.com

97 

Minimize -R = 'Pd ̂  (7d/(KQ)) + cd + (icq/2) + K 
Q, K K + (cQ/2) 

s . t .  - K  +  K  .  <  0  a n d  K  -  K  „  < 0  mm - max -

The corresponding boundary and interior solutions which are derived from 

the first order necessary conditions under both profit maximization and 

return on investment maximization are summarized in Table 3. Moreover, in 

Table 3, we also present whether the second order sufficient conditions 

are satisfied or not at the solutions, which are obtained from the first 

order necessary conditions. 

From Table 3, we note that, for the hyperbolic setup cost case, both 

the boundary solutions and the interior solutions can be optimal (cf., the 

linear setup cost case) no matter which optimization criterion is 

employed. Hence, the optimal investment decision for setup cost reduction 

under hyperbolic setup cost can be ^max' ^inf Throughout the 

rest of this paper, we will denote as the interior solution of the 

investment decision in the setup operations. Also, by examining the 

Hessian matrices of the objective functions (i.e, -t and -R), it can be 

easily shown that the objective functions are strictly convex for the 

hyperbolic setup cost case. By employing both the convexity property of 

the objective functions and Table 3 and as by comparing the objective 

function values evaluated at K • and K the decision-making rules can mm max' ° 

be developed. Exhibit 1 depicts the decision-making rules for profit 

maximization decision maker. Ve note that in Exhibit 1, Q • ' ̂T,min •_lc'' ' mm 
and n 

^i,max ' K_r'lc ^ max 

From Table 3 or Exhibit 1, the optimal interior solution of the investment 
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Boundary Solutions Interior Solutions 

K Q s.o.s.c. K Q S.O.N.C. 

Profit 
Maximization Kmin or ICniu 

V KIc satisfied 
y 4Yd 
V IV 

satisfied 

ROI 
Maximization ICjaiii Of Kkmu c-iV c^+4B,cK' 

2BicK satisfied 
-Bi-iV BI-4B3 

2 
3Y 

(p-c)K 
satisfied 

CO 
00 

Table 3. The solution for hyperbolic setup cost case 
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Exhibit 1. The decision-making rules for hyperbolic setup cost case 
under profit maximization 

« W < < w 
thei < = (J§2d-)l/3 , (^)V3 

I c 

else 

{ if Ic < n then K* = and 
^T,min ^Tjmax 

mm 

- i = } 

max 

* 
decision for setup operations increases as the inventory holding cost 

I, the per unit variable cost c, the sales quantity per unit time d, or 

the positive parameter of the setup cost function 7 increases. Moreover, 
* 

the optimal interior solution of the order quantity increase as the 

sales quantity per unit time d or the positive parameter of the setup cost 

function 7 increases. On the other hand, the optimal interior solution of 

the order quantity decreases as the inventory holding cost I or the per 

unit variable cost c increases. 

For the return on investment maximization decision maker, the 

decision-making rules can be described as Exhibit 2. We note that, in 

c+(c^+4B. 
2, Qg = 2b/' ct 

c+(c^+4B. cK^ ^ l,max max' 
W,—TTK" • l,min mm 
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Exhibit 2. The decision-making rules for hyperbolic setup cost case 
under return on investment maximization 

pd- cd-. pd- cd-+iK 
T D nun iniH -p ^ ID3JC lUdJC 

l,min ~ 273 ' l,max ~ ' 

•-SSp-' 

-B. + (B^ - 4B„)°-^ 
H ^ < W 

, -B, + (B^ - 4B3)''-® , 3 
then Kj^ = —^^^ and 

(P-C)% 

Else 

K K 
{ if then K* = K„. and Qp = Qp •- q2 q2 ' K mm ^K,min 

^R,min ^R,max 
* 

.V.'fcips'. I 

From Exhibit 1 and Exhibit 2, we note that the combination of the 

optimal investment decisions in the setup operations under profit 

maximization and return on investment maximization are among the following 

nine cases: 1) = Kp = K • , 2) K = K . ; k! = K 3) K* = K„- ; k! = ^ T H mm' ' t mm' K max' ' T mm' R 
K. 4) K* = K. .; K! = K . , 5) K* = K! = K- ^, 6) K* = K- ^: K! = K 
mt' ' T mt' R mm' ' t R mt' ' x mt' R max' 
7) K = K : Kd = K . , 8) K = K : K,, = K. and 9) K = Kn = K 
' r max' R mm' ' T max' R mt' > t R max 

In order to illustrate the features of the hyperbolic setup cost case 

under both profit maximization and return on investment maximization, we 

provide the following numerical example. 
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Example 2. Suppose 7 = 15000, d = 25, I = 0.2, i = 0.1, c = 100, p = 150. 

Ve plot the negative profit (-T) surface and the negative return on 

investment (-R) surface in Figure 3 and Figure 4, which show that the 

interior solutions derived from solving the first order necessary 

conditions (i.e., (K^, = (155.36, 15.54) and (Kp^, Qj^) = (169.03, 

5.32)) are global minimum solutions (this is due to the convexity of the 

objective functions). 

We now demonstrate that all of those nine cases can exist by only 

changing the per unit cost c and the lower and upper limits of the amount 

of investment for setup operations (i.e., and K^^^). The results are 

presented in Table 4. 

By examining Table 4 carefully, we make the following interesting 

observations. 

1) The optimal investment decisions in the setup operations may be 

identical no matter which optimization criterion is employed. For 

example, when (c, = (60 , 90, 110), K* = K* = or 

.hen (c, = (100, 170, 190), 

2) The optimal investment decisions in the setup operations may be in 

opposite direction in the sense that = K or K = T nnn it nia«x T 

Ws 4 ' W »hen (c, K^) = (40, 90, 110), 

K = aJid h = or when (c, K . , K ) = (120, 168, 175), K* T max R mm ^ ' mm' max' ^ ' t 
= K . : Kd = K 
mm' R max 

3) The optimal investment decisions in the setup operations may occur at 

interior points for both profit maximization and return on investment 

maximization. For example, when (c, K . , K ) = (80, 130, 150"), K ^ mm' max' ^ ' ' '' T 
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c Kmlo K"' K; A R; OK Rr JCr Remark 

40 90 110 110 29.19 2406.45 3.5527 90 4.64 9.5883 1743.45 Kit—Kmax> L^R~L^inin 

50 90 120 120 25.00 2130.00 2.9430 123.31 4.49 7.3196 1543.54 Kji=Kinax» KR^Kuii 

60 90 110 110 23.84 1853.96 2.3334 110 4.47 5.5876 1350.52 K*=KR = K„,ax 

70 130 150 137.95 19.71 1586.16 1.9995 130 4.37 4.2220 1179.32 Ki=Ki„,;KR=K„,i„ 

80 130 150 144.23 18.02 1317.33 1.6062 141.74 4.54 3.1154 989.19 K; = KR = Ki„t 

90 130 152 150.00 16.67 1050.00 1.2498 152 4.87 2.2080 797.58 K;=Ki„,;KR=K^ax 

100 170 190 170 14.85 783.92 0.9394 170 5.31 1.4651 611.48 K;; = KR = K„,i„ 

110 170 190 170 14.16 518.87 0.6285 160.83 6.29 0.8636 398.70 K;=Kmi„;KR=Kint 

120 168 175 168 13.64 254.71 0.3412 175 8.48 0.3970 220.54 Kn—Kmini KR~Kinax 

Table 4. Numerical results for hyperbolic setup cost case 
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* * * 
= 144.23 and = 141.74. In this case, both and Kj^ are interior 

points. 

4) The optimal investment decision under profit maximization may occur 

at boundary points (interior points) while the optimal investment 

decision under return on investment maximization may occur at 

interior points (boundary points). For example, when (c, 

= (50, 90, 120), and Kp = K- or when (c, K »^) = ^ ^ J max R int' ^ ' mm' max' 

(110, 170, 190), k! = K . and k! = K- or when (c, K . , K ^^) = ^ ^' T mm R int' ^ ' mm' max' 

(70, 130, 150), and or when (c, = 

(90, 130, 152), S; = aad KJ = 

By comparing the optimal investment decisions for linear setup cost 

case and the optimal investment decisions for hyperbolic setup cost case, 

it can be easily observed that the optimal investment decisions for linear 

setup cost case is more sensitive than the optimal investment decisions 

for hyperbolic setup cost case. This is because that the optimal 

investment decisions for linear setup cost case occurs only at boundary 

points (i.e., or while the optimal investment decisions for 

hyperbolic setup cost case may occur at both boundary points and interior 

points (i.e., K . , or K. ,). ^ ^ ' max' mm' mt' 

C0NCLI}DIN6 SEl&BKS 

In this paper, we constructed and analyzed inventory and investment 

in setup cost operations policies under profit maximization and return on 

investment maximization for the decision maker of the inventory system. 

First, we showed how inventory and investment in setup operations policies 
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under profit maximization and return on investment maximization can be 

formulated for general functional form of the investment in setup 

operations. From these formulations, the optimality conditions and the 

corresponding economic interpretations are obtained. Next, for the 

specific cases of the linear setup cost and the hyperbolic setup cost, the 

optimal closed-form solutions are obtained and several interesting 

managerial insights are presented. 

The models developed in this paper relates general practices since 

numerous industries and firms apply EOQ based decision making for their 

inventory systems. There are several possible extensions that will further 

improve the relevance of our models to general practices. They include 

incorporation of more sophisticated features such as shortages, delivery 

lags, and stochastic demand rates, etc. From the perspective of investing 

in setup operations, it would be of interest to study the allocation of 

the investment in setup operations. For example, how much should be 

invested in purchasing or leasing new equipments and how much should be 

invested in labor's training and wages, etc. From the perspective of 

optimization criterion, it would be of interest to study the effects of 

investing in setup operations on process quality improvement, effective 

capacity and flexibility improvement (see e.g., Porteus [11], and Spence 

and Porteus [15]) in conjunction with the optimization criterion of return 

on investment. 
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CHAPTER IV. 

A IDLTI-PRODUCT EOQ lODEL ¥ITH PRICING CONSIDERATION 

-T. C. E. CHENG'S MODEL REVISITED 

A paper published in 

Computers and Industrial Engineering: In International Journal 

Cheng-Kang Chen and K. Jo Min 

ABSTRACT 

Ve present two major revisions/corrections regarding a recent paper by T. 

C. E. Cheng [1]. First, we note that a critical assumption of the equal 

replenishment cycle length for all products is stated, but not 

incorporated into the mathematical formulation in Cheng [1]. In this 

paper, we re-formulate the problem with the equal replenishment cycle 

length incorporated and derive the corresponding Kuhn-Tucker optimality 

conditions. Next, under the linear demand assumption, we show that the 

closed-form solutions provided by Cheng [1] may result in non-optimal 

solutions. The reason is that Cheng [1] failed to derive conditions under 

which the closed-form solutions may be optimal. In this paper, by 

employing the trigonometric methods (see e.g., Porteus [7]), we derive the 

optimal closed-form solution that is unique and obtain the conditions 

under which the optimal closed-form solution is valid. 
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DiTRODUCTION 

In a recent paper, Cheng [1] proposes a multi-product EOQ model that 

integrates the pricing and order sizing decisions to maximize profit with 

storage space and inventory investment constraints. This EOQ problem is 

formulated as a constrained non- linear optimization problem and the 

corresponding Kuhn-Tucker conditions are derived for the optimal 

solutions. 

Even though Cheng [1] makes a valuable contribution in integrating 

inventory and pricing policies, we believe that the EOQ model needs two 

major revisions/ corrections - one in the model formulation phase and the 

other in the closed-form solution derivation phase under the linear demand 

assumption. 

In Cheng's paper [1], a critical and simplifying assumption is made 

that all products have equal replenishment cycle length. Under this 

assumption, he formulates the multi-product EOQ problem as a nonlinear 

programming, which maximizes profit over the demand rate and the order 

size for each product by considering the storage space and inventory 

investment constraints. In the formulation, however, the equal 

replenishment cycle length assumption is not mathematically incorporated. 

Therefore, the optimal solutions from the model may result in unequal 

replenishment cycle lengths for some products, violating the stated 

assumption. In this paper, we will explicitly incorporate the equal 

replenishment cycle length assumption in the formulation. Consequently, we 

obtain the Kuhn-Tucker optimality conditions that are substantially 

different from those shown in Cheng [1]. 
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Also, under the linear demand assumption, Cheng [1] provides optimal 

closed-form solutions. Ve will show that the closed-form solutions, 

however, may result in non-optimal solutions via numerical examples. The 

reason is that Cheng [1] failed to derive conditions under which the 

closed-form solutions may be optimal. In this paper, by employing the 

trigonometric methods (see e.g., Chapter 2 of Griffiths [6]), we derive 

the optimal closed-form solution that is unique and obtain the conditions 

under which the optimal closed-form solution is valid. 

BASIC lODEL 

In order to formulate the basic model, as in Cheng's paper [1], the 

following definitions and assumptions are employed. 

n = total number of products produced by the firm; 

= demand rate for product i; 

Q = (Q^, Qgj ^3'"'' Qq)' demand rate vector; 

q^l^ = order size of product i; 

q = (Q;[j ^2' ̂ 3'""' 'In^' order size vector; 

= order cost per batch of product i; 

r^ = unit cost of production of product i; 

j = fractional inventory carrying cost rate; 

T = length of a replenishment cycle; 

f^ = storage space requirement per unit of product i; 

= unit selling price of product i; 

n(Q, q, T) = total profit derived from the sale of the products; 
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F = total fixed cost of production and administration; 

A = total storage space available; 

I = maximum inventory investment allowable. 

The following basic assumptions about the model are made: 

(Al) All products have the equal replenishment cycle length T. 

i.e., T = J 1=1, "**5 n. 

(A2) Replenishments of the products are instantaneous. 

(A3) No backorder is permitted. 

(A4) The demand rates are uniform and continuous. 

(A5) The demand functions of the products are given as follows: 

Pi = 1 < i < n 

where h^(') is a function of which, in general, is 

monotonically decreasing. 

In addition, in this paper as well as implicitly in Cheng [1], it is 

assumed that all products are replenished at the same time. 

Under these definitions and assumptions, the revenue per cycle is 

n 
S P^q-, the total production cost per cycle plus the total fixed cost of 
i=l ^ ^ 

. 2 
jr.qi 

production and administration per cycle are S (s- + r-q. + —mi ) + FT. 
i^l 1 11 ^ifi 

Therefore, the profit per cycle, which is the revenue less the cost, is 

n n 
given by S P.q. - S (s- + r.q. + —A ̂ ) - FT. The corresponding profit 

i=l ^ ^ i=l ^ ^ ̂  

per unit time can be obtained by dividing the profit per cycle by the 

^i cycle length q . The objective of our model is to maximize the profit 
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per unit time subject to the storage and inventory investment constraints 

as well as the equal replenishment cycle length restriction. Namely, 

Ma^cimize n(Q, q, T) = S {hiCDJQi - ̂  - r.q, - - F (1) 1 1 1 qj 11 

subject to : 

1. Sf.q. <A (2) 
i=l ^ ^ 

n jr-q? 
2- ^ -50"^ ̂ ^ (3) 

i=l ^'^i 
q. 

3. T = for i = 1, 2, 3, 4, , n (4) 

where q^ are non-negative for 1 < i < n. 

In particular, the third constraint explicitly expresses the critical 

assumption that all products have the equal replenishment cycle. In such a 

case, the decision variables are not only the demand rate and the order 

size for each product but also the equal replenishment cycle length. Ve 

note that, in Cheng's paper [1], the third constraint is not incorporated 

in the formulation even though the assumption is stated in the problem. 

This omission, we believe, is significant in that the optimization of the 

formulation in Cheng [1] may result in infeasible solutions. To emphasize 

the differences between Cheng [1] formulation and our revised formulation, 

a numerical example is provided at the end of this section. 

Also, in order to meet the standard form of nonlinear programming 

(see, e.g., Chiang [3] or Intriligator [4]), we will employ an equivalent 

set of constraints for the third constraint as follows. 

Qi % 
T ̂  —q-— and T y —q-—. (5) 
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Given the revised fommlation of the problem (1)-(3) and (5), we have 

the following Lagrangian function: 

where and for i = 1, •••, n, are the Lagrangian 

multipliers. 

Next, invoking the Kuhn-Tucker optimality conditions for the Lagrangian 

function (6), we obtain the necessary conditions for the optimal solution 

as follows. 

Condition 1 

n jr.q? n q. n q-
>^2(1 - S —20 } + S + -n—} + S 4;^{ --g— + T} (6) 
^ i=l ^''i i=l ^ ^i i=l ^ "^i 

Qi _ - 0, 1 < i < n. 

or 

(7)  

Condition 2 

< 0, 1 < i < n. 

or 

1 

1 

1i 
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Condition 3 

1i-|- = 0. 1 < i < n. 

or 

jr. jr.q. ^ ^ 
qi{—2 2 A^f. - Ag g— + = 0 (9) 

Condition 4 

^ < 0, 1 < i < n. 

or 

î'ii Ĵ i 11 
—5 2— - Ajf. - ^2—g— + l^i-j: - ''i-gr ̂  ® 

Condition 5 

or 

A^{A - S f.q.} = 0 (11) 
^ i=l ^ ^ 

Condition 6 

dl 
-357-° 

or 

n 
A - S f.q. > 0 (12) 

i=l ^ ^ 

Condition 7 

\ dl _ r. 
^2~UX^ - " 

or 

5 Jr.q. 
= 0 (13) 

i=l 
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dL 

or 

n jr.q? 

1=1 

Condition 9 

T - 0 1 _ 0 

or 

T{ S = 
i=l ^ ^ 

Condition 10 

dL y, Q 

-sr ̂ ° 

or 

n 
S (-/i. + a.) < 0 
i=l ^ ^ 

Condition 11 

dL f\ 1 y • = 0' 1 ̂  1 

or 

/'ii'T + = 0 

Condition 12 

-|- > 0,1 < i < 

or 

-T + -Tri- > 0 



www.manaraa.com

117 

Condition 13 

5L 
"i" 

= 0, 1 < i <Tl. 
1 

or 

^i{ + T} - 0 (19) 
'1 

Condition 14 

dl 
d(ii^ > 0, 1 < i < n, 

or 

q 
— + T > 0 (20) 
^1 

Condition 15 

Qi» Qis T, Ap Ag, ftp 0, 1 < i < n. (21) 

Ve note that the above conditions (7) — (21) are only the necessary 

conditions for optimality. Ve will refer the readers to optimization 

textbooks such as Luenberger [5] regarding the second order sufficient 

conditions (SOSC) for the optimality. Ve also note that there are several 

widely-used commercial software packages (such as GINO) which efficiently 

computes the optimal solutions for non-linear optimization problem. 

Finally, we note that there is an implicit assumption that the profit 

level at the optimality for each product i (excluding the total fixed cost 

F, which is independent of i) is non-negative. The reason is that few 

firms will operate with negative profit for any product in the long run. 

So far, we have incorporated the condition of equal replenishment 

cycle length into the mathematical formulation and obtained the 

corresponding Kuhn-Tucker conditions. In order to illustrate the 

differences between Cheng's formulation and our revised formulation, we 
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construct the following numerical example: 

j = 0.4 A = 500 I = 50 F = 0 

?! = = fli - 2̂ °2 • 

0^ = 100 ttg = 120 =20 ^2 = 

8^ =18 82= 30 r^ = 1.2 rg = 1.8 f^ = 0.9 f2 = 1.5 

Table 1. Comparison Between Cheng's Formulationand Revised Formulation 

Cheng's Formulation Revised Formulation 

demand rate 

* 
50.68 51.18 

demand rate * 
'2 965.91 963.36 

order size 

* 
^1 61.78 17.16 

order size * 
^2 284.43 323.04 

cycle length 

* 

Tl 1.2192 0.3353 
cycle length * 

^2 0.2495 0.3353 

storage space 
constraint non-binding 482.25 < 500 binding 500 = 500 

inventory invest
ment constraint non-binding 48.23 < 50 non-binding 40.38 < 50 

cycle length 
constraint violated, T^ # Tg satisfied, T^ = T2 

feasibility infeasible feasible and optimal 

By employing an optimization software package GINO and an IBM PC 386, we 

easily obtain the solutions for both formulations. The corresponding 

results are summarized in Table 1. 

From Table 1, we observe the following: 

1) The optimal values of decision variables can be quite different. This 
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implies that a manager might end up with an infeasible decision if he 

had followed Cheng [1]. 

2) The condition of equal replenishment cycle length may have an impact 

on the storage space constraint or the inventory investment 

constraint. For example, the storage space constraint is non-binding 

in Cheng's Formulation while it is binding in Revised Formulation. 

As shown in 1) and 2), as well as in Table 1, not incorporating the 

condition of equal replenishment cycle length may substantially distort 

the optimal solutions, and the managerial consequence (due to 

infeasibility, etc.) may be substantial. 

LINEAR nmm FDNCTION 

In Cheng [1], under the linear demand assumption, closed-form 

solutions are derived through relations (21) - (28) relying on Standard 

Mathematical Table [2]. First of all, we believe that there is a 

typographical error in equation (27). Instead of = - ( -(b^/2) + 

((b?/4) + (a?/27))»-5)V3 as in Cieng [1], = ( - (bj/2) - {(b|/4) + 

(a?/27))°-®)'/®. 

Even if equation (27) of Cheng [1] were correct, a serious problem 

arises in equations (28) and subsequent sentences in page 534 of Cheng 

[1]. Equations (28) provide three candidates for the closed-form solution. 

On line 5 and 6 in page 534, the following is stated verbatim: "It follows 

* 2 * 1/2 that = y^ and, from equation (21), q^ = yj^(2s^/jrj^) ' . Finally, we 
* • 

have to determine whether the solutions Q and q satisfy the constraints. 

If they do, then they are optimal." 
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The problem with the above statement is that even if such solutions 
* + 
q and q were found, they may not be optimal solutions! The reason is 

that Cheng [1] failed to derive conditions under which equations (28) lead 

to the closed-form optimal solutions. A related problem is that Cheng [1] 

also failed to present a mechanism to determine the true optimal candidate 

out of the three candidates of equations (28). Ve demonstrate these 

problems by way of the following numerical example as well as the example 

at the end of this section. 

Let us suppose that Sj^ = 200, j = 0.5, rj^ = 40, mj^ = 10, and = 100 

for product k. Then, equations (24)-(28) in Cheng [1] lead to = 4.10, 

0.95-0.565i, or 0.95+0.565i. Obviously, the imaginary numbers are 

unrealistic to be the optimal solutions. In the case of = 4.10, the 

corresponding qj^ is equal to -9.0598, which is also unrealistic. 

As we can see from this numerical example, clarification and 

improvement are necessary. In order to do so, we employ the trigonometric 

methods (see e.g.. Chapter 2 of Griffiths [6] or appendix of Porteus [7]), 

and derive the optimal closed-form solution that is unique and obtain the 

conditions under which the optimal closed-form solution is valid. Specific 

derivations are as follows. 

As in Cheng [1], we assume that there is a linear relationship 

between the unit selling price and demand rate for the products. 

Specifically, we denote the price-demand function as follows. 

Pi = h.(q.) = P9 - m.Qp 1 < i < n. (22) 

where P?, m^ > 0 are arbitrary constants and p9 > m^Q^. 

Following the solving procedure in Cheng's paper [1], we assume for 
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the time being that constraint sets (2) and (3) are inactive while 

constraint set (4) is satisfied. Hence, we can obtain the following 

necessary conditions for the optimal solutions. 

= P« - 2m,H, - rj - = 0 (23) 

T 2- - " 

2SiQi Q 5 
By substituting and rearranging the relation —) ' from (24) 

^ i 

into (23), we obtain the optimality condition for as follows: 

^i'^ ̂  ^ = 0 (25) 
"i ^ 8m^ 

By employing the trigonometric methods (see e.g., Chapter 2 of Griffiths 

[6] or appendix of Porteus [7]), we obtain the optimal demand rate, Q^, as 

follows. 

0 e. * 2(PV - r.) 2 -1 
'̂ i 

27m.jr.s- ^ c q_ 
where cos^- = - ( t, 5-) ' , and -tj- < $ < —3—. 

' 4(r° - i.f 2 4 

Ve note that the upper bound of 3ir/4 on the critical angle 9 is obtained 

from the assumption that the resulting profit for each product i is 

non-negative. On the other hand, the lower bound of T/2 on the critical 

angle 0 implies that parameters m^, j, r^, and s^ should all be strictly 

positive in order for the profit maximization EOQ model to be 

non-degenerate. From (24), the corresponding order size q^ is: 

* 4s.(P9 - r.) 0.5 6. 
^i - (— ) cos(-g-) (27) 
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for 2 ^ ^ ̂  

TT 3^ For it can be easily verified that the second order 

sufficient conditions for the profit maximization are satisfied at (Q^^, 

q^) given by expression (26) and (27). 

From (26) and (27), we obtain the corresponding optimal price and 

replenishment cycle length Tj|^ as follows. 

Finally, we have to examine whether the solution Q , q satisfy the 

constraint sets (2), (3), and (4). If they do, then they are optimal. If 

they do not, then the constraints are active and we have to employ the 

Lagrangian function and the Kuhn-Tucker conditions, as discussed in the 

previous section, to find the optimal solutions. 

In order to illustrate some of the features discussed in this 

section, we will solve a two-product profit maximization problem over the 

demand rate and order size q^ for i = 1, 2. Ve will solve by the 

trigonometric methods first. Let us assume that the following parametric 

values are provided. 

(28) 

(29) 

* * 

j = 0.5 

Pj = 100 

m^ = 11.06 

A = 60 I = 25 

P® = 67.49 

"2 = 
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Sj =10 82= 12 

ri = 1 rg = 2 

f ^ = 2  ^2 " ̂ 

From equations (26) and (27), the optimal demand rate and order size for 

product 1 and 2 are given by 

Q* = 4.44, q* = 13.33; 

Qg = 2 .67,  qg = 8 .00.  

It can be easily verified that the corresponding replenishment cycle 

lengths for product 1 and product 2 are both equal to 3. On the other 

hand, the corresponding storage space and inventory investment in this 

problem are 50.67 and 22. Both the storage space and inventory investment 

constraints are satisfied at the optimal solution. 

In contrast to the trigonometric methods, if equations (28) of Cheng 

[1] are used, the demand rate for product 1 will be 0.000255, 4.50923, or 

4.44167. Ve note that no mechanism is provided in Cheng [1] that will 

determine which one among the three candidates is the optimal solution, 

cf. the trigonometric methods result in the unique demand rate. 

snnm 

In this paper, we have presented two major revisions/ corrections 

regarding a recent paper by T. C. E. Cheng [1]— "An EOQ Model with 

Pricing Consideration". First, we pointed out that the critical assumption 

of equal replenishment cycle length for each product was not incorporated 

into his model formulation. The correct model should have contained n+2 

constraints instead of two, and the number of the optimality Kuhn-Tucker 
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conditions should have been fifteen instead of nine. Next, in the case of 

linear demand functions, we indicated that the solutions provided by Cheng 

[1] may result in non-optimal solution, or multiple candidates. By 

employing the trigonometric methods, we derived the optimal closed-form 

solution that is unique and obtained the conditions under which the 

optimal closed-form solution is valid. 
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Abstract 

We propose a two-stage brokerage system for electric power transactions. 

By employing economic analysis and linear programming at each stage, we 

show that significant gains in economic efficiency can be achieved. 

Key Words: Costing, Brokerage, Linear Programming, Economic Efficiency, 

Electric Power, Interconnected Power Network. 
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1. Introduction 

The electric power industry in the United States is currently facing 

a drastic transformation from a traditional, regulated, and vertically 

integrated environment to a de-regulated and competitive environment [6]. 

A primary motivation for this transformation is to improve the economic 

efficiency in the power industry. A critical research area where the 

power industry can improve the economic efficiency is that of power 

interchange in an interconnected power system. The power interchange may 

improve the economic efficiency because there exist some potential savings 

whenever the difference in incremental production costs among utilities is 

significant and excess production capacities exist. In this paper, for 

the power interchange transactions among utilities, we present a two-stage 

brokerage system that will result in significant gains in economic 

efficiency. 

The purpose of a brokerage system is to maximize the total benefit 

(saving) by matching the bids from buyers and sellers. The conventional 

brokerage system (see Doty and McEntire [1] or Fahd, Richards, and Sheble 

[3] for details) matches the highest purchase bid with the lowest sale 

bid, the second highest purchase bid with the second lowest sale bid, and 

so on. The matching process terminates when a viable match no longer 

exists. Doty and McEntire [1] proposed two algorithms to improve the 

conventional brokerage systems; one employed a network flow algorithm and 

the other utilized dynamic programming techniques. Fahd, Richards, and 

Sheble [3] implemented an energy brokerage system by employing linear 

programming. In their model, buyers and sellers can use the transmission 
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networks of intermediate utilities and pay for the transmission service 

charges. The transmission service charges of their model are assumed to 

be strictly positive. This assumption, however, is not universally 

accepted. That is, the transmission service charges may be positive or 

negative (see e.g., Li and David [4]). This implies that the transmission 

service charges, in their model, do not reflect the true cost/benefit of 

the intermediate transmission utilities. In contrast, in this paper, we 

attempt to design the transmission service charges so as to accurately 

reflect the true cost/benefit of the intermediate transmission utilities 

by considering physical aspects of the transmission such as the prevailing 

direction of power flow. Furthermore, in our paper, the sellers, buyers, 

and the intermediate transmission utilities actively calculate their net 

costs and benefits in determining the sale and purchase bids and the 

transmission service charges. This feature differentiates our paper from 

the extant literature on electric power brokerage systems. 

In our model, at the first stage, the brokerage system will match the 

bids from buyers and sellers. At this stage, the brokerage system does 

not take the transmission service charges of the intermediate transmission 

utilities into account. At the second stage, based on the matching bids 

of buyers and sellers, the brokerage system determines the route(s) with 

the minimum transmission service charges. The transmission service 

charges are based on an economic dispatch calculation employing a 

transportation method (see e.g., Lee, Thome, and Hill. [5]). The 

following assumptions are made for the model: 

1) Intermediate transmission utilities are neither buyers nor sellers. 
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2) The transmission service charges are small relative to the total 

savings from power interchange transactions. 

3) The electric power flow can be treated as a commodity that can be 

transported by any selected transmission route subject to capacity 

restrictions (with advanced transmission systems such as the flexible 

AC transmission system (FACTS), it is a reasonable assumption, see 

e.g., Li and David [4]). 

The rest of this paper is organized as follows. First, we briefly 

review an economic dispatch model employing a transportation method. 

Then, we will show how the two-stage brokerage system is constructed. 

Also, in order to elucidate the two-stage brokerage system, several 

numerical examples are provided. Finally, the concluding remarks are made. 

2. Review of a Transportation-Type EconoBic Dispatch lodel 

The conventional economic dispatch [8] concerns with the minimization 

of production cost subject to demand-supply relations and generation 

capacity constraints for an electric utility. The optimal solutions, 

however, do not specify the power flow direction on each transmission 

line. In order to rectify this shortcoming and specify the power flow 

directions, Lee, Thome, and Hill [5] proposed an alternative economic 

dispatch model employing a transportation method. Our model will utilize 

this transportation-type economic dispatch model in determining bids for 

buyers and sellers as well as transmission service charges for 

intermediate transmission utilities. Hence, we first briefly review the 

transportation-type economic dispatch model. Ve employ the same notations 
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as in Lee, Thorne, and Hill [5] for an I-generator, N-bus, M-line system. 

I(n) = number of generators connected to bus n, 

M(n) = number of lines connected to bus n, 

= MW produced at generator i, 

Fi(Gi)= the production cost for Gi MW at generator i, 

D, = MW load at bus n, n 

Rjjj = the resistance of transmission line m, measured in 1/MW, 

T = MW transmitted on line m. m 

The subscripts i, n, m are dummy counters for I, N, M respectively. Also, 

in Lee, Thome, and Hill [5], the transmission loss is directly related to 

the amount of power on a transmission line and can be approximately 

expressed by the following relation (see Elgerd [2] for details). 

hu = Vm (1) 

where is the transmission loss on line m. 

" n2 Therefore, the total transmission loss in the system, Pj^ = S Now, 

if we denote the marginal cost for transmission loss by h, then the cost 

function for transmission loss in the system will be hPj^. 

Under these definitions and assumptions, the economic dispatch 

problem can be mathematically formulated as follows. 

I 
Minimize: F = S + hPj^ (2) 

I(n) M(n) 
subject to ; S G^ - + II Tjjj = 0 (3) 

G. < G. < ̂  for all i, (4) 

0 < llj < r for all m. (5) 

It is noted that the decision variables in the above system are G^'s and 
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Tjij's. Equation (3) represents the law of conservation at each bus (i.e., 

flow into the bus = flow out of the bus). Bar under and bar over 

represent lower and upper limits on the decision variables. Also, in this 

paper, we assume that the production cost function has a linear 

relation with respect to the generation output (see e.g., Fahd, 

Richards, and Sheble [3] or Wood & Vollenberg [8]). Ve will first 

introduce the following example to illustrate the transportation-type 

economic dispatch model. Also, this example will be further utilized 

throughout this paper to illustrate the features of the two- stage 

brokerage system for electric power transactions. 

h 

C
O

 

^1 ^2 ^3 ^4 Cost 

Utility 1 100 200 - 12.5 37.5 62.5 - 5303.1 

Utility 2 150 350 200 27.3 77.3 272.7 150 19018.2 

Utility 3 350 150 - 92.9 257.1 207.1 - 9988.6 

Utility 4 250 200 150 60.0 210.0 90.0 90 7114.0 

Utility 5 250 150 150 116.7 16.7 150.0 150 14916.7 

Table 1. Optimal solutions by employing the transportation-type 
economic dispatch method 

RTamplfi 1 Ve now consider the five-utility interconnected electric 

power system shown in Figure 1. The relevant information of 

the generators and the transmission lines for each utility is 

shown in Appendix. 

The optimal solution for each utility by employing the transportation-

type economic dispatch is shown in Table 1. 
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3. Basic lodel for the Tvo-St<^e Brokerage System 

In this section, we will present the basic model for the two-stage 

brokerage system. Specifically, we will show: 1) how to detennine the 

bids for buyers and sellers, 2) how to match the bids from buyers and 

sellers, 3) how to determine the transmission service charges for the 

intermediate transmission utilities, and 4) how to choose the route(s) to 

transmit the electric power. One assumption we make on the 

transportation-type economic dispatch model is that the linear terms in 

the objective function (2) (i.e., the production cost terms) are dominant 

relative to the non-linear terms in the objective function (2) (i.e., the 

transmission loss cost terms). This is reasonable when the cost of 

transmission loss is relatively small. 

3.1 Determination of Bids for Buyers and Sellers 

In this subsection, we show how the buyers and sellers determine 

their purchase and sale bids. Because of our assumption that the linear 

terms of the objective function (2) are dominant, the optimal strategies 

under the transportation-type economic dispatch model dictate the 

utilities produce power to the upper limit at the generator with smaller 

incremental costs (see e.g., Fahd, Richards, and Sheble [3]). 

Consequently, some extra generation capacities will exist at the generator 

with the highest incremental cost within each utility. Hence, the utility 

can produce power to the upper limit at the generator with the highest 

incremental cost and sell the surplus power to other utilities. On the 

other hand, the utility can shut down the generator with the highest 
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incremental cost and purchase from other utilities the amount of power 

that the shut-down generator produces. For example, if the optimal level 

of the generation at the generator with the highest incremental cost and 

* TT-the upper limit of that generator are and GT, then the possible sale 

quantity and purchase quantity of electric power for the utility are -
* * 
and G^, respectively. Also, we note that the purchase price and sale 

price for the electric power equal the incremental cost of the electric 

power being generated (see e.g., Fahd, Richards, and Sheble [3]). 

Utility HW to Buy Purchase Price Utility MV to Sell Sale Price 

1 200 20 1 50 20 

3 150 25 3 30 25 

5 150 35 5 150 35 

Table 2. Purchase and sale bids for buyers and sellers 

KTaaplfi 9. (Continued from Example 1) Suppose only utility 1, utility 3, 

and utility 5 in the interconnected power system as shown in 

Fig. 1 can be buyers or sellers (i.e., only utility 2 and 

utility 4 can be intermediate transmission utilities), 

The buying and selling bids for these utilities are as shown in Table 2. 

S.2 The First Stage of the Brokerage System: Matching Bids from Buyers 

and Sellers 

Once the central broker receives the bids from buyers and sellers, a 

linear programming model is set up to match the bids. At this stage, the 

brokerage system does not take the transmission service charge of the 
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intermediate transmission utilities into account. Ve denote the per MV 

saving of the transaction between buyer j and seller i by AC... The 

decision variable, the amount of transacted power between seller i and 

buyer j, is denoted by I--. The objective of this matching process is to 

maximize the total saving for all possible transactions subject to 

supply-demand constraints. Hence, we are concerned with the transactions 

with positive saving (i.e., AC^j > 0). Therefore, we mathematically 

formulate the matching process as the following linear programming. 

Maximize: S I^. AC^- (6) 

subject to: S I.. < I? for all i, (7) 

E I.. < I? for all j, (8) 
i,i^j J 

I^. > 0, for all i and j. (9) 

S F where I.=sale quantity of seller i, and I.=purchase quantity of buyer j. 
J 

Utility to Sell 
Power (i) 

Utility to Buy 
Power (j) 

Purchase/n 
Price 

Sale /p \ 
Price^^Si^ Saving (AC^p 

1 3 25 20 5 

1 5 35 20 15 

3 5 35 25 10 

Table 3. Positive cost coefficients of objective function in linear 
programming formulation. 

Exaatple 3 (Continued from Example 2) Let us perform the matching 

process for utility 1, utility 3, and utility 5 based on the 

results of Example 2. 

The cost coefficients ('s) that are positive are shown in Table 3. The 
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linear programming formulation for the matching process is now as follows. 

Maximize; 5 + 15 + 10 

subject to: < 50 

I35 < 30 

1^3 < 150 

Il5 . I35 < 150 

I.. > 0, for all i and j, 

The corresponding optimal solution is as follows: = 0, = 50, Igg 

30, and the total saving = 1050. 

S.S Calculation of Transmission Service Charges for Intermediate 

Transmission Utilities 

After obtaining the outcomes of the matching process via linear 

programming, the central broker will inform the relevant intermediate 

utilities to provide transmission facilities and the corresponding 

transmission service charges. For example, utility 2 and utility 4 are 

the relevant intermediate utilities to the transactions among utility 1, 

utility 3, and utility 5 (see Figure 1). In this subsection, we discuss 

how an intermediate transmission utility determines his transmission 

service charge. Specifically, by treating the injected power and the 

extracted power due to the transaction as additional generations or 

additional loads, we can re-formulate the transportation-type economic 

dispatch model for the intermediate transmission utility. The 

transmission service charge (TSC) can be calculated from the difference in 

the total cost for the intermediate transmission utility with the 
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transaction and without the transaction (see e.g., Shirmohammadi [7]). 

Namely, 

TSG = Total Cost with Transaction - Total Cost without Transaction 

KxaMplft 4 (Continued from Example 3) Suppose the transaction between 

utility 1 and utility 5 employs the transmission facilities of 

utility 2. The configuration of the power system network is 

shown as Figure 1. Let us now determine the transmission 

service charge for utility 2. 

For utility 2, we consider the transaction between utility 1 and utility 5 

by treating bus 4 has an additional injected power generation of 50 MV and 

bus 3 has an additional extracted power load of 50 MW. By re-calculating 

the transportation-type economic dispatch, the optimal total cost with the 

transaction for utility 2 can be easily obtained as $18518.2. Therefore, 

the transmission service charge is equal to -$500 (= 18518.2 - 19018.2). 

The negative sign of the transmission service charge indicates the 

intermediate transmission utility is benefitted from providing 

transmission facilities. 

3.4 The Second Stage of the Brokerage System: Selection of ioute(s) to 

Transmit Electric Power 

In the second stage of the brokerage system, after receiving the 

information of the transmission service charges from all relevant 

intermediate transmission utilities, the central broker will choose the 

route (or routes) with the minimum cost to transmit power. Ve assume that 
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when there are multiple routes to transmit power for a transaction, the 

central broker will choose the one(s) with the least number of 

intermediate transmission utilities involved. It is reasonable because 

the more intermediate transmission utilities are involved, the more 

complex the transactions will physically become. Vhen there are more than 

one route with the same least number of intermediate transmission 

utilities involved, the central broker will choose the one with the 

minimum transmission service charge. If the route with the minimum 

transmission service charge reaches its transmission capacity limit, then 

the central broker will choose the route with the second minimum 

transmission service charge, and so on. This process will be continued 

until all the transacted power has been transmitted, or all transmission 

capacity is exhausted. After the second stage of the brokerage system, 

the transactions among buyers, sellers, and intermediate transmission 

utilities are finalized. 

y.YaMp1p .'i (Continued from Example 4) Let us determine the routes for 

the transactions from the matching process at the first stage 

of the brokerage system. 

For the transaction between utility 1 and utility 5 (I^j = 50MW), the 

transacted power can be transmitted via utility 2 or utility 4. Hence, 

the comparison of the transmission service charges from utility 2 and 

utility 4 is necessary. By considering the configuration of the electric 

power network shown in Figure 1 and employing the method described earlier 

for transmission service charges, we can have the transmission service 

charges shown in Table 4. 
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From Table 4, it is noted that the central broker will choose utility 2 as 

the intermediate transmission utility for the transaction between utility 

1 and utility 5 due to xae smaller transmission service charge. 

For the transaction between utility 3 and utility 5, there is only 

Transmit Power with Transaction without Transaction Transmission 
Service Charge 

via Utility 2 18518.2 19018.2 -500 

via Utility 4 7356.0 7114.0 242 

Table 4. Transmission service charges for intermediate transmission 
utilities. 

one route (i.e., via utility 4) to transmit power from utility 3 to 

utility 5. For utility 4, the total costs with transaction and without 

transaction are $7057.84 and $7114.0; therefore, the transmission service 

charge is -$56.16. 

4. Concliidiiig Reaarks 

In this paper, a two-stage brokerage system for electric power 

transactions in an interconnected power system is presented. In the 

first-stage of the brokerage system, a linear programming model is set up 

to maximize the total saving from all potential transactions. In the 

second stage of the brokerage system, a method is presented to find the 

route(s) with the minimum transmission service charge for all 

transactions. 

There are several possible extensions that will further improve the 

model presented in this paper. These extensions include incorporation of 
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more sophisticated features of power systems such as the voltage, phase 

angle, and security issues into the interconnected power system. 
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Appendix 

The relevant data of the interconnected power system shown in Figure 1. 

Incremental Costf!S/MV) 
or Resistance(1/MW) 

Upper Limit 
(MV) 

Lower Limit 
(HV) 

Utility 1 
(h=15) 

Generator 1 12 100 0 

Utility 1 
(h=15) 

Generator 2 20 250 0 

Utility 1 
(h=15) 

Line 1 0.001 100 0 Utility 1 
(h=15) Line 2 0.002 100 0 
Utility 1 
(h=15) 

Line 3 0.001 100 0 

Utility 2 
(h=20) 

Generator 1 30 300 0 

Utility 2 
(h=20) 

Generator 2 25 350 0 

Utility 2 
(h=20) 

Generator 3 15 200 0 

Utility 2 
(h=20) 

Line 1 0.0015 150 0 Utility 2 
(h=20) Line 2 0.003 200 0 
Utility 2 
(h=20) 

Line 3 0.001 400 0 

Utility 2 
(h=20) 

Line 4 0.002 250 0 

Utility 3 
(h=20) 

Generator 1 10 350 0 

Utility 3 
(h=20) 

Generator 2 25 180 0 

Utility 3 
(h=20) 

Line 1 0.005 200 0 Utility 3 
(h=20) Line 2 0.001 500 0 
Utility 3 
(h=20) 

Line 3 0.001 300 0 

Utility 4 
(h=12) 

Generator 1 8 250 0 

Utility 4 
(h=12) 

Generator 2 10 200 0 

Utility 4 
(h=12) 

Generator 3 15 250 0 

Utility 4 
(h=12) 

Line 1 0.001 200 0 Utility 4 
(h=12) Line 2 0.001 400 0 
Utility 4 
(h=12) 

Line 3 0.001 300 0 

Utility 4 
(h=12) 

Line 4 0.002 200 0 

Utility 5 

(h=25) 

Generator 1 25 250 0 

Utility 5 

(h=25) 

Generator 2 10 150 0 

Utility 5 

(h=25) 

Generator 3 35 300 0 
Utility 5 

(h=25) 
Line 1 0.001 250 0 Utility 5 

(h=25) Line 2 0.001 200 0 

Utility 5 

(h=25) 
Line 3 0.001 250 0 

Utility 5 

(h=25) 

Line 4 0.002 300 0 
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CHAPTER VI. 

i TRUATfaUL BROKMCE SYSTH FOR FQVER TR&NSACTIONS 

A paper to be submitted to 

International Journal of Energy Research 

Cheng-Kang Chen and K. Jo Hin 

Sunary 

In this paper, we design and analyze a brokerage system for buyers, 

sellers, and intermediate utilities of electric power. Specifically, we 

mathematically characterize the determination of bids by buyers and 

sellers, the matching process of bids, and the selection of the 

transmission routes by the brokerage system. Moreover, we analyze the 

cost/benefit to intermediate utilities from the transmission of transacted 

power. The two key features differentiating this model from the extant 

literature on electric power transmission pricing and brokerage systems 

are: (1) multiple purchase and sale bids from potential buyers and sellers 

and (2) the systematic determination of transmission routes from 

minimizing the total cost to intermediate utilities. The improvement in 

economic efficiency (measured in terms of cost savings) is demonstrated 

via a series of numerical examples. 
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1. Introduction 

The electric power industry in the United States is currently facing 

a drastic transformation from a traditional, regulated, and vertically 

integrated environment to a de-regulated and competitive environment 

(McCalley and Sheble ,1994). A primary motivation for this transformation 

is to improve the economic efficiency in the power industry. A critical 

research area where the power industry can improve the economic efficiency 

is that of power interchange in an interconnected power system. The power 

interchange may improve the economic efficiency because there exist some 

potential savings whenever the difference in incremental production costs 

among utilities is significant and excess production capacities exist. 

For the power interchange transactions among utilities, Chen and Min 

(1995) presented a two-stage brokerage system to match purchase bids and 

sales bids as well as to select the route(s) to transmit electric power. 

In this paper, by extending Chen and Min (1995) to allow multiple purchase 

bids and sale bids from each potential buyer and seller and by formulating 

the problem of selecting route(s) to transmit electric power as a 

nonlinear program, we show that the economic efficiency of the brokerage 

system for power transactions can be significantly improved. 

The purpose of a brokerage system is to maximize the total benefit 

(saving) by matching the bids from buyers and sellers. The conventional 

brokerage system (see Doty and McEntire, 1982; or Fahd, Richards, and 

Sheble, 1992. for details) matches the highest purchase bid with the 

lowest sale bid, the second highest purchase bid with the second lowest 

sale bid, and so on. The matching process terminates when a viable match 
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no longer exists. Doty and McEntire (1982) proposed two algorithms to 

improve the conventional brokerage systems: one employed a network flow 

algorithm and the other utilized dynamic programming techniques. Fahd, 

Richards, and Sheble (1992) implemented an energy brokerage system by 

employing linear programming. In their model, buyers and sellers can use 

the transmission networks of intermediate utilities and pay for the 

transmission service charges. The transmission service charges of their 

model are assumed to be strictly positive. This assumption, however, is 

not universally accepted. That is, the transmission service charges may 

be positive or negative (see e.g., Li and David, 1994). This implies that 

the transmission service charges, in their model, do not reflect the true 

cost/benefit of the intermediate transmission utilities. In contrast to 

Fahd, Richards, and Sheble (1992), Chen and Min (1995) proposed a 

two-stage brokerage system for power transactions so as to accurately 

reflect the true cost/benefit of the intermediate transmission utilities 

by considering physical aspects of the transmission such as the prevailing 

direction of power flow. In Chen and Min (1995), at the first stage, the 

brokerage system matches purchase bids and sale bids from buyers and 

sellers. Specifically, each buyer (seller) is restricted to have a single 

purchase (sale) bid. At the second stage, the brokerage system determines 

the route(s) to transmit the transacted power by some pre-specified rules. 

In this paper, the two-stage trilateral brokerage system for power 

transactions is improved and extended as follows. 

1) At the first stage, Chen and Min (1995) restricted each potential 

buyer or seller can only submit a single purchase bid and a single sale 
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bid. In this paper, multiple purchase bids and multiple sales bids are 

allowed for the buyer and the seller to submit to the central broker. The 

option of multiple purchase bids and multiple sale bids from the buyer and 

the seller may result in increased total cost saving because the case of a 

single purchase bid and a single sale bid from each buyer and each seller 

is a subset (or a special case) of the case that multiple purchase bids 

and sale bids are allowed. 

2) At the second stage, Chen and Min (1995) presented some specified 

rules for the central broker to transmit the transacted power. That is, 

when there are multiple routes to transmit power for a transaction, the 

central broker will choose the one(s) with the least number of 

intermediate transmission utilities involved. Vhen there are more than 

one route with the same least number of intermediate transmission 

utilities involved, the central broker will choose the one with the 

minimum transmission service charge. If the route with the minimum 

transmission service charge reaches its transmission capacity limit, then 

the central broker will choose the route with the second minimum 

transmission service charge, and so on. In contrast to Chen and Min 

(1995), instead of employing these pre-specified rules, we mathematically 

formulate the problem of selecting route(s) to transmit the transacted 

power as a nonlinear program. The objective now becomes to minimize the 

sum of the total cost of the intermediate transmission utilities involved 

in providing transmission facilities subject to the supply-demand 

relations at each bus and the capacity limits of each generator and each 

transmission line of the intermediate transmission utilities. In such a 
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case, the optimal solution for selecting route(s) to transmit the 

transacted power can be obtained. 

By incorporating the above two aspects and by employing a numerical 

example, we will show that the economic efficiency of the brokerage system 

for power transaction can be significantly improved. 

The following assumptions are made for the model: 

1) Intermediate transmission utilities are neither buyers nor sellers. 

2) The transmission service charges are small relative to the total 

savings from power interchange transactions. 

3) The electric power flow can be treated as a commodity that can be 

transported by any selected transmission route subject to capacity 

restrictions (with advanced transmission systems such as the flexible 

AC transmission system (FACTS), it is a reasonable assumption, see 

e.g., Li and David, 1994). 

The rest of this paper is organized as follows. First, we briefly 

review an economic dispatch model employing a transportation method. 

Then, we will show how the two-stage trilateral brokerage system is 

constructed. Also, in order to elucidate the two-stage trilateral 

brokerage system, several numerical examples are provided. Finally, the 

concluding remarks are presented. 

2. Review of a Transportation-Type EconoKic Dispatch Model 

The conventional economic dispatch (Vood and Vollenberg, 1984) 

concerns with the minimization of production cost subject to demand-supply 

relations and generation capacity constraints for an electric utility. 
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The optimal solutions, however, do not specify the power flow direction on 

each transmission line. In order to rectify this shortcoming and specify 

the power flow directions, Lee, Thome, and Hill (1980) proposed an 

alternative economic dispatch model employing a transportation method. 

Our model will utilize this transportation-type economic dispatch model in 

determining bids for buyers and sellers as well as transmission service 

charges for intermediate transmission utilities. Hence, we first briefly 

review the transportation-type economic dispatch model. Ve employ the 

same notations as in Lee, Thome, and Hill (1980) for an I-generator, 

N-bus, M-line system. 

I(n) = number of generators connected to bus n, 

H(n) = number of lines connected to bus n, 

= MW produced at generator i, 

F^(Gj^)= the production cost for 6^ MV at generator i, 

= MV load at bus n, 

= the resistance of transmission line m, measured in 1/MW 

T = MV transmitted on line m, m ' 

The subscripts i, n, m are dummy counters for I, N, M respectively. Also, 

in Lee, Thome, and Hill (1980), the transmission loss is directly related 

to the amount of power on a transmission line and can be approximately 

expressed by the following relation (see Elgerd, 1971. for details), 

flm = Vm 

where is the transmission loss on line m. Therefore, the total 

in t\ 

transmission loss in the system, = S Now, if ve denote the 

marginal cost for transmission loss by h, then the cost function for 
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transmission loss in the system will be hPj^. 

Under these definitions and assumptions, the economic dispatch 

problem can be mathematically formulated as follows. 

I 
Minimize: F = S F^(G.) + hPj^ (2) 

I(n) ' M(n) 
subject to : i + S = 0 (3) 

G. < G. < GT for all i, (4) 

0 < \\\ < T;; for all m. (5) 

It is noted that the decision variables in the above system are G^i^'s and 

Tjij's. Equation (3) represents the law of conservation at each bus (i.e., 

flow into the bus = flow out of the bus). Bar under and bar over 

represent lower and upper limits on the decision variables. Also, in this 

paper, we assume that the production cost function has a linear 

relation with respect to the generation output G^ (see e. g . ,  Fahd, 

Richards, and Sheble, 1992; or Wood & Vollenberg, 1984). ¥e will first 

introduce the following example to illustrate the transportation-type 

economic dispatch model. Also, this example will be further utilized 

thrc"<;hout this paper to illustrate the features of the two-stage 

brokerage system for electric power transactions. 

ETaapIP! 1 Ve now consider the five-utility interconnected electric power 

system shown in Figure 1. The relevant information of the generators and 

the transmission lines for each utility is shown in Appendix. The optimal 

solution for each utility by employing the transportation-type economic 

dispatch is shown in Table 1. 
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Figure 1. Five-utility interconnected electric power system 
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^1 ^2 co
 Tl ^2 ^3 ^4 Cost 

Utility 1 100 200 0 12.5 37.5 62.5 - 3303.1 

Utility 2 150 350 200 27.3 77.3 272.7 150 19018.2 

Utility 3 350 150 0 175.0 175.0 125.0 - 9400.0 

Utility 4 250 200 150 60.0 210.0 90.0 90 7114.0 

Utility 5 250 150 150 116.7 16.7 133.3 150 14916.7 

Table 1. Optimal solution from transportation-type economic dispatch 
model. 

3. The Trilateral Brokerage System 

In this section, we will present the basic model for the two-stage 

trilateral brokerage system. Specifically, we will show: 1) how the 

buyers and the sellers determine their purchase bids and sale bids, 2) how 

the brokerage systems matches the purchase bids from buyers and sale bids 

from sellers, 3) how the brokerage system chooses the route(s) to transmit 

the transacted electric power, and 4) how the intermediate transmission 

utilities can be benefited or cost by providing transmission facilities. 

One assumption we make on the transportation-type economic dispatch model 

is that the linear terms in the objective function (2) (i.e., the 

production cost terms) are dominant relative to the non-linear terms in 

the objective function (2) (i.e., the transmission loss cost terms). This 

is reasonable when the cost of transmission loss is relatively small. 
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S.l Determination of Bids for Buyers and Sellers 

la this subsection, we show how the buyers and sellers determine 

their purchase and sale bids under the assumption that multiple purchase 

bids and sales bids are allowed to submit to central broker from each 

potential buyer or seller. Because of our assumption that the linear 

terms of the objective function (2) are dominant, the optimal strategies 

under the transportation-type economic dispatch model dictate the 

utilities produce power to the upper limit at the generator with smaller 

incremental costs (see e.g., Fahd, Richards, and Sheble, 1992). 

Consequently, some extra generation capacities will exist at the 

generators with the higher incremental cost within each utility. Hence, 

the utility can produce power to the upper limits at the generators with 

the higher incremental costs and sell the surplus power to other 

utilities. On the other hand, the utility can shut down the generators 

with the lower incremental costs and purchase from other utilities the 

amount of power that the shut-down generators produce. For example, 

suppose there are five generators within an electric utility, and the 

optimal levels of these five generators are Gg = Gg = 6g 

* * (where Gg < Gg < Gg), G^ = Gg = 0, respectively. Then the possible sale 

quantities for sale bids are -Gg, and On the other hand, the 

possible purchase quantities for purchase bids are Gg, and Also, 

we note that the purchase price and sale price for the electric power 

equal the incremental cost of the electric power being generated (see 

e.g., Fahd, Richards, and Sheble, 1992). 
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Purchase Bids 

Utility Bids MW to Purchase Purchase Price 

1 1st 200 12 

1 2nd 100 8 

3 1st 150 20 

3 2nd 350 10 

5 1st 150 35 

5 2nd 250 25 

5 3rd 150 10 

Sale Bids 

Utility Bids MV to Sell Sale Price 

1 1st 50 12 

1 2nd 100 18 

3 1st 100 20 

3 2nd 150 30 

5 1st 150 35 

Table 2. Purchase and sale bids for buyers and sellers. 

ExaKple 2 (Continued from Example 1) Suppose only utility 1, utility 3, 

and utility 5 in the interconnected power system as shown in Fig. 1 can be 

buyers or sellers (i.e., only utility 2 and utility 4 can be intermediate 

transmission utilities). Then the buying and selling bids for these 

utilities are as shown in Table 2. 

Ve note that, if we allow single purchase bid and single sale bid in 

this example, there are only three purchase bids and three sale bids. 
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3.2 Matching Bids from Buyers and Sellers: Formulation of Linear 

Programing 

Oace the central broker receives the bids from buyers and sellers, a 

linear programming model is set up to match the purchase bids and sale 

bids. At this stage, the brokerage system does not take the transmission 

service charge of the intermediate transmission utilities into account. 

Ve denote the per MV saving of the transaction between buyer b's ith 

purchase bid and seller s's jth sale bid by The decision 

variable, the amount of transacted power between seller s's jth sale bid 

and buyer b's ith purchase bid is denoted by The objective of 

this matching process is to maximize the total saving for all possible 

transactions subject to supply-demand constraints. Hence, we are only 

concerned with the transactions with positive saving (i.e., >0). 

Therefore, for the terms corresponding to positive ^j's only, we 

mathematically formulate the matching process as the following linear 

programming. 

Maximize: S o• AC, . (6) 

subject to: S L • • < I . for all s and j, (7) 
b,i 

S. ̂ bi,sj - ^bi ^ 

Ibi > 0, for all b, s, i and j. (9) 

where is the total sale quantity for seller s's jth bid and is the 

total purchase quantity for buyer b's ith bid. 

Exaaple 3 (Continued from Example 2) Let us perform the matching process 

for utility 1, utility 3, and utility 5 based on the results of Example 2. 
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Utility to Sell Power Utility to Buy Power Purchase 
Price 

Sale 
Price Saving 

Utility Bids Utility Bids 

Purchase 
Price 

Sale 
Price Saving 

1 1st 3 1st 20 12 8 

1 1st 5 1st 35 12 23 

1 1st 5 2nd 25 12 13 

1 2nd 3 1st 20 18 2 

1 2nd 5 1st 35 18 17 

1 2nd 5 2nd 25 18 7 

3 1st 5 1st 35 20 15 

3 1st 5 2nd 25 20 5 

3 2nd 5 1st 35 30 5 

Table 3. Positive cost coefficients of objective function in linear 
programming. 

The cost coefficients ('s) that are positive are shown in Table 3. 

The linear programm for the matching process is now as follows. 

Maximize: 8 + 23 + 13 152^11 + 2 ^ ^51,12 

^ ̂  %,12 ^51,31 ® ^52,31 ^ ̂ 51,32 

subject to: + ^52,11 -

31,12 + hi,12 ^ ̂52,12 -

51,31 + ^52,31 -

51,32 
< 150 

31,11 + hi,12 -

51,11 + ^51,12 ̂  ̂ 51,31 ^51,32 

52,11 + ^52,12 ̂  ̂ 52,31-

bi,sj 
> 0, for all b, s, i and j 
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The corresponding optimal solution is as follows: = Igg = 13^ -^2 

^ ̂ 52,12 ^51,31 = ^51,32 ^51,11 ^ ^51,12 ̂  ^52,31 

30. That is, utility 5 will purchase 150 IW from utility 1 and 30 MW from 

utility 3, and the total cost saving is $3000. ¥e note that, given the 

same model environments in this example, if only single purchase bid and 

single sale bid are allowed from the potential seller and buyer to submit 

to central broker, the result is: utility 5 purchases 50 MW from utility 1 

and 30 MW from utility 3, and the total cost saving is $1700 (see Chen and 

Min, 1995, for details). From this comparison, by allowing multiple 

purchase bids and multiple sale bids from each potential seller and buyer, 

the total cost saving is increased by $1300 which is approximately 76.57o 

(= (3000-1700)/1700). 

3.S Selection of io%te(s) to Transmit Electric Power 

After obtaining the outcomes of the matching process via linear 

programming, the central broker will inform the relevant intermediate 

utilities to provide transmission facilities. For example, utility 2 and 

utility 4 are the relevant intermediate transmission utilities to the 

transactions among utility 1, utility 3, and utility 5 (see Figure 1). In 

this subsection, we discuss how the central broker chooses the route (or 

routes) to transmit the transacted power. We assume that the central 

broker has the complete information of the relevant intermediate 

transmission utilities such as incremental cost at each generator, 

resistance at each transmission line, etc. Also, we note that the 

injected power and the extracted power due to the transaction can be 
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treated as additional generations or addition loads for the intermediate 

transmission utility. For the central broker, the objective is to 

minimize the sum of the total costs of intermediate transmission 

utilities. In order to mathematically formulate the problem, we first 

introduce the following notations. 

= the generation output at generator j of utility i. 

'^im " transmitted at transmission line m of utility i. 
ITU Xgb = HW transmitted from seller s to buyer b via ITU (intermediate 

transmission utilities) 

Therefore, the objective function can be formulated as follows. 

Minimize; S TC, = X [ S FiiCCj;) + h. S R. T?„ 1 (10) 
ieITU 1 i ^ j IJ' IJ' 1 ̂  im im J 

Also, the conservation law at bus j (i.e., flow in = flow out at each bus) 

within utility i can be expressed as follows. 

S G^j - + S T^jjj + S = 0 for all bus j within utility i (11) 

We should also consider the generation capacity limits at each generator 

as well as the transmission capacity limits at each transmission line. 

The total amount of transacted power from seller s to buyer b, 1^^, should 

be equal to or greater than the sum of the HW transmitted from seller s to 

buyer b through all different intermediate transmission utilities (i.e., 

ITU S X , ). Therefore, the complete mathematical formulation for the 
ITU 

central broker to choose the route(s) is as follows. 
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Minimize. S TCj = S [ E Fi.(Cip . hj S ] (12) 
IGITU 1 J m 

subject to: 

• ®4t, + = 0 for all bus j of utility i (13) ij m iiu SD 

S for all transactions (14) 

Gii < for all i and j (15) 

0 ̂  |T^„1 < TT" for all i and m. (16) ~ ' im' ~ im ^ ' 
ITU Ve note that the decision variables in the model are X , 's and T- 's. so im 

Ryaaplfi 4 (Continued from Example 3) Select the routes to transmit the 

transacted power of 150 MW from utility 1 to utility 5 and 30 MW from 

utility 3 to utility 5. 

According to Figure 1 and the result of matching process from Example 

3, we can have the following mathematical formulation for this problem. 

Minimize 30G2J+25G22+15G23+ 20(0.0015T2j + O.OO3T22 + O.OOlTgg + 

0.0021^4) +8G4J+IOG42+I5G43+ 12(0.00114^ + O.OOIT42 + 

O.OOIT43 + O.OO2T44) 

subject to : Ggj - 100 + 1:21 ' ̂22 ~ ® 

G22 - 50 - l2i " ^23 ~ ® 

823 • 50 -124 - As - " 

^•22 * ̂ 23 '•24 " * ''is ^ "M " " 

G4I - 100 + • ̂ 42 ® 

842 - 6" - T41 - I44 ̂  4 - "35 = » 

G43 - 150 + - T^J - 5jj - x|j = 0 

T42 . T43 • 300 . X̂ g . X« = 0 
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+ "15 ̂  "0 

4 " 4s ̂ 30 

^ii - ^ii - ®iT i = 1, 2, 3, 4 and j =2, 4 
*J «J «J 

0 < |T^„| < T7I for i = 2, 4 and m = 1, 2, 3, 4. - ' im' ~ im 733 

By employing GINO (an mathematical optimization software), we can easily 

2 42 4 obtain the optimal solution as follows: X^g = 150, Xgg = 30, X^g = 0, and 

4 Xgg = 0. That is, 150 MV from utility 1 to utility 5 will utilize the 

transmission facilities of utility 2 while 30 MV from utility 3 to utility 

5 will utilize the transmission facilities of utility 4 and utility 2. If 

we employ the pre-specified rules developed in Chen and Min (1995), the 

result of selecting routes to transmit the transacted power is to utilize 

the transmission facilities of utility 2 to transmit 150 MW from utility 1 

to utility 5 (i.e., X^g = 150) and utilize the transmission of utility 4 

to transmit 30 MW from utility 3 to utility 5 (i.e., 4 = 30). 

3.4 Cost/Benefit Calculation for Intermediate Transmission Utilities 

The transmission service charge (TSC) can be calculated from the 

difference in the total cost for the intermediate transmission utility 

with the transaction and without the transaction (see e.g., Shirmohammadi 

et oL, 1991). Namely, 

TSC = Total Cost with Transaction - Total Cost without Transaction 

EMMple 4 (Continued from Example 3) Calculate the transmission service 

charges for utility 2 and utility 4. 

For utility 2, we consider: 1) the transaction between utility 1 and 
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utility 5 by treating bus 4 has an additional injected power generation of 

150 IW and bus 3 has an additional extracted power load of 150 MV; and 2) 

the transaction between utility 3 and utility 5 by treating bus 4 has an 

additional injected power generation of 30 MV and bus 3 has an additional 

extracted power load of 30 MV. By re-calculating the transportation-type 

economic dispatch, the optimal total cost with the transactions for 

utility 2 can be easily obtained as $18154.2. Therefore, the transmission 

service charge for providing transmission facilities for utility 2 is 

equal to -$864 (= 18154.2 - 19018.2). The negative sign of the 

transmission service charge indicates the intermediate transmission 

utility is benefited from providing transmission facilities. 

For utility 4, the total costs with transaction and without 

transaction are $6932.56 and $7114. Therefore, the transmission service 

charge is -$181.44. 

Ve note that, from the perspective of the central broker, the total 

sum of the transmission service charges for the brokerage system is 

-$1045.44 (= -864 -181.44). Under the same model environments, if we 

employ the pre-specified rules proposed in Chen and Min (1995), the total 

sum of the transmission service charges is -$956.16. The economic 

efficiency is improved approximately 9.33% (= (1045.44-956.16)/956.16). 

4. Concluding Kenarks 

In this paper, we extended the model of the two-stage trilateral 

brokerage system discussed in Chen and Min (1995) to the following two 

aspects. First, the restriction of single purchase bid and single sale 
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bid from each potential buyer and seller is relaxed. In this paper, we 

allow multiple purchase bids and multiple sale bids from each potential 

buyer and seller. By formulating a linear program to maximize the total 

cost saving in matching bids from sellers and buyers, we show that the 

total cost saving can be significantly improved under the assumption that 

multiple purchase bids and multiple sale bids are allowed. Second, 

instead of employing the pre-specified rules proposed in Chen and Min 

(1995) to determine the route(s) to transmit the transacted power , we 

mathematically formulate the problem of selecting routes to transmit the 

transacted power as a nonlinear program. In such a case, the optimal 

solution for selecting route(s) to transmit the transacted power can be 

obtained. 

There are several possible extensions that will further improve the 

model presented in this paper. These extensions include incorporation of 

more sophisticated features of power systems such as the voltage, phase 

angle, and security issues into the interconnected power system. 
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Appendix 

The data information of the interconnected power system shown in Figure 1. 

Incremental Costf$/MW) 
or Resistance(1/MW) 

Upper Limit 
(MV) 

Lower Limit 
(MW) 

Utility 1 

(h=lS) 

Generator 1 8 100 0 

Utility 1 

(h=lS) 

Generator 2 12 250 0 
Utility 1 

(h=lS) 

Generator 3 18 100 0 Utility 1 

(h=lS) Line 1 0.001 100 0 

Utility 1 

(h=lS) 
Line 2 0.002 100 0 

Utility 1 

(h=lS) 

Line 3 0.001 100 0 

utility 2 
(h=20) 

Generator 1 30 300 0 

utility 2 
(h=20) 

Generator 2 25 350 0 

utility 2 
(h=20) 

Generator 3 15 200 0 

utility 2 
(h=20) 

Line 1 0.0015 150 0 utility 2 
(h=20) Line 2 0.003 200 0 
utility 2 
(h=20) 

Line 3 0.001 400 0 

utility 2 
(h=20) 

Line 4 0.002 250 0 

Utility 3 
(h=20) 

Generator 1 10 350 0 

Utility 3 
(h=20) 

Generator 2 20 180 0 

Utility 3 
(h=20) 

Generator 3 30 150 0 

Utility 3 
(h=20) 

Line 1 0.002 200 0 Utility 3 
(h=20) Line 2 0.001 500 0 
Utility 3 
(h=20) 

Line 3 0.001 300 0 

Utility 4 
(h=12) 

Generator 1 8 250 0 

Utility 4 
(h=12) 

Generator 2 10 200 0 

Utility 4 
(h=12) 

Generator 3 15 250 0 

Utility 4 
(h=12) 

Line 1 0.001 200 0 Utility 4 
(h=12) Line 2 0.001 400 0 
Utility 4 
(h=12) 

Line 3 0.001 300 0 

Utility 4 
(h=12) 

Line 4 0.002 200 0 

Utility 5 

(h=25) 

Generator 1 25 250 0 

Utility 5 

(h=25) 

Generator 2 10 150 0 

Utility 5 

(h=25) 

Generator 3 35 300 0 
Utility 5 

(h=25) 

Line 1 0.001 250 0 Utility 5 

(h=25) Line 2 0.001 200 0 

Utility 5 

(h=25) 
Line 3 0.001 250 0 

Utility 5 

(h=25) 

Line 4 0.002 300 0 



www.manaraa.com

162 

GENERAL CONCLUSIONS 

In this dissertation, we investigated kow lot-size decision makers 

and electric power utilities determine critical economic quantities so as 

to improve the economic efficiency of operations. Throughout this 

dissertation, the optimal policies were obtained through linear and 

nonlinear programming techniques. For each model, interesting managerial 

insights and economic implications were obtained and illustrative 

numerical examples were provided. For each chapter of this dissertation, 

we present a detailed summary and possible extensions as follows. 

In Chapter 1, we constructed and analyzed EOQ-type models for a buyer 

who was just informed of a temporary sale. For such a buyer, optimal 

inventory/disposal policies were derived by comparing cost savings of 

various cases. By analyzing the optimal inventory/disposal policies, 

several managerial insights were obtained. Several possible extensions 

can be made to enhance the inventory model developed in Chapter 1. For 

example, one class of extensions can be made with respect to the option of 

disposal. In Chapter 1, it is assumed that the seller will not react to 

the buyers' disposal (if any). It would be of interest to investigate 

several possible policies of a seller, e.g., prohibition of disposals, 

benefit sharing of disposals, etc. Ve believe that such extensions will 

improve the applicability in practice of the inventory/disposal models in 

response to sales. We hope this improvement in applicability will result 

in increased economic efficiency for the buyer (as well as the seller). 
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In Chapter 2, we constructed and analyzed aji EOQ-type model for a 

buyer who is just informed of a pre-announced sale. By "a pre-announced 

sale", we mean the announcement time of the sale occurs before the 

beginning time of the sale. For such a buyer, optimal inventory policies 

are derived by comparing cost savings of various cases. By analyzing the 

optimal inventory policies, several managerial insights are obtained. 

Several possible extensions can be made to enhance the inventory models 

developed in Chapter 2. For Example, it is assumed that the sale period 

is less than one regular EOQ replenishment cycle. By relaxing this 

assumption and allowing the sale period is greater than one regular EOQ 

replenishment cycle, interesting models that augment the models in Chapter 

2 can be developed. 

In Chapter 3, we constructed and analyzed inventory and investment in 

setup cost operations models under profit maximization and return on 

investment maximization for lot-size decision makers. First, we showed 

how inventory and investment in setup operations models under profit 

maximization and return on investment maximization can be formulated for 

general functional form of the investment in setup operations. From these 

formulations, the optimality conditions and the corresponding economic 

interpretations are obtained. Next, for the specific cases of the linear 

setup cost and the hyperbolic setup cost, the optimal closed-form 

solutions are obtained and several interesting managerial insights are 

presented. 

The models developed in Chapter 3 relates general practices since 

numerous industries and firms apply EOQ based decision making for their 
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inventory systems. There are several possible extensions that will 

further improve the relevance of our models to general practices. They 

include incorporation of more sophisticated features such as shortages, 

delivery lags, and stochastic demand rates, etc. From the perspective of 

investing in setup operations, it would be of interest to study the 

allocation of the investment in setup operations. For example, how much 

should be invested in purchasing or leasing new equipments and how much 

should be invested in labor's training and wages, etc. From the 

perspective of optimization criterion, it would be of interest to study 

the effects of investing in setup operations on process quality 

improvement, effective capacity and flexibility improvement (see e.g., 

Porteus, 1986, and Spence and Porteus, 1987) in conjunction with the 

optimization criterion of return on investment. 

In Chapter 4, we presented two major revisions/corrections regarding 

a recent paper by T. C. E. Cheng (1990) — "An EOQ Model with Pricing 

Consideration". First, we pointed out that the critical assumption of 

equal replenishment cycle length for each product was not incorporated 

into his model formulation. We reformulated the entire model and derived 

the corresponding Kuhn-Tucker conditions. Next, in the case of linear 

demand functions, we indicated that the solutions provided by Cheng (1990) 

may result in non-optimal solution, or multiple candidates. By employing 

the trigonometric methods, we derived the optimal closed-form solution 

that is unique and obtained the conditions under which the optimal 

closed-form solution is valid. 

In Chapter 5, a two-stage brokerage system for electric power 
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transactions in an interconnected power system is presented. In the 

first-stage of the brokerage system, a linear programming model is set up 

to maximize the total saving from all potential transactions. In the 

second stage of the brokerage system, a method is presented to find the 

route(s) with the minimum transmission service charge for all 

transactions. 

Chapter 6 revised Chapter 5 in the following two aspects. First, 

multiple purchase bids and multiple sales bids are allowed for the buyers 

and the sellers to submit to the central broker. This may result in 

increased total cost saving because the case of a single purchase bid and 

a single sale bid from each buyer and each seller is a subset (or special 

case) of the case that multiple purchase bids and sale bids are allowed. 

Second, we mathematically formulate the problem of selecting route(s) to 

transmit the transacted power as a nonlinear program. In such a case, the 

solution for selecting route(s) to transmit the transacted power can be 

optimally obtained. 

There are several possible extensions that will further improve the 

models presented in Chapter 5 and Chapter 6. These extensions include 

incorporation of more sophisticated features of power systems such as the 

voltage, phase angle, reactive power, and security issues into the 

interconnected power system. 
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