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GENERAL INTRODUCTION
General Background and Objectives

In this dissertation, we examine how lot-size decision makers and
electric power utilities determine critical economic quantities (e.g., the
order quantities for lot-size decision makers and transmission service
chargers for electric power utilities) so as to improve the economic
efficiency of operations. Throughout this dissertation, the optimal
policies are obtained through linear and nonlinear programming techniques.
For each model, interesting managerial insights and economic implications
are obtained and illustrative numerical examples are provided.

For lot-size decision makers, we extend the traditional economic
order quantity model by considering various aspects of model environments
‘Euch as inventory/pricing policies and different performance criteria
(profit maximization vs. return on investment maximization). By analyzing
the optimal solutions derived in our models, several interesting
managerial insights are obtained. On the other hand, for electric power
utilities, we propose a two-stage trilateral brokerage system for electric
power transactions by considering the costs and benefits to buyers,
sellers, and intermediate transmission utilities. By employing economic
analysis and linear and nonlinear programming techniques, we show that
significant gains in economic efficiency (often measured in terms of cost

saving) can be achieved. Details of background and motivation for our



study (first for the lot-size decision makers, then for the electric power
utilities) are as follows.

Keeping an inventory to meet potential demand in the future is
prevalent in most businesses. Manufacturers, wholesalers, and retailers
generally have a stock of goods on hand. How to determine the "inventory
policies" (i.e., when and how much to order/produce as well as how much to
charge per unit) becomes a critical issue for lot-size decision makers. A
simple model representing production- inventory situation is given by the
well-known traditional economic order quantity (E0OQ) model (see e.g.,
Hillier and Lieberman, 1995).

The traditional E0Q model determines the production- inventory system
by considering omly cost factors consisting of a fixed setup cost, a
variable unit production cost, and an inventory holding cost. It should
be pointed out, however, that the inventory policies of numerous
businesses may depend on its relations to other business policies
regarding pricing and sales. In this study, we attempt to integrate the
policies of inventory and pricing/sales so as to maximize the decision
maker’s benefit.

The optimal inventory policies under price changes, based on the
classical economic order quantity (E0Q) models, have been extensively
studied (see e.g., Goyal, Srinivasan, and Arcelus, 1991, Lev and Veiss,
1990, Ardalan, 1988, 1991, 1994, and Aull-Hyde, 1992, etc.). In their
papers, the wide range of industrial practices and applicability of price
changes are discussed in details. Inventory policies under disposal

options have also been studied to some extent (see e.g., Rosenfield, 1989,



Sethi, 1984, and Tersine and Toelle, 1984, etc.).

The numerous studies of these topics in the literature reflect the
relevance and importance of the topics to both academicians and
practitioners. Also, it is intuitive that, given a temporary sale, a
buyer may find it beneficial to place a special order at a reduced price
and/or dispose some of his on-hand inventory at a salvage value because
these transactions may result in reduced total cost for the inventory
system. Up to now, however, there have been few analytical models that
integrates inventory and disposal policies under temporary sales. Hence,
it is highly desirable to construct and analyze quantitative models of
inventory and disposal policies under temporary sales.

First, we investigate the optimal inventory and disposal policies for
a buyer who is just informed of a temporary sale by his supplier. It is
shown how the buyer determines the optimal inventory and disposal
quantities so as to exploit the temporary sale.

This inventory model is extended by focusing on the period between
the announcement and commencement of a sale. By analyzing the optimal
solutions for this extended model, it is shown how the pre-announcement
can be utilized to maximize cost saving.

Next, we examine an inventory and investment in setup operations
model under profit maximization and under return on investment
maximization. From the optimality conditions, the optimal order quantity,
investment level, and several interesting managerial insights are
obtained.

Finally, we consider a published multi-product E0Q model with



constraints, and examine its optimal inventory and pricing policies. We
show that there are two critical errors, and provide correct design and
analysis by re-formulating and re-solving the entire model.

For electric power utilities, in the United States, they are
currently facing a drastic transformation from traditional, regulated,
and vertically integrated emvironments to de-regulated and competitive
environments (see e.g., McCalley and Sheble, 1994). A primary motivation
for this transformation is to improve the economic efficiency in the
electric power industry. A critical research area where the electric
pover industry can improve the economic efficiency is that of power
interchange in an interconnected power system. The power interchange may
improve the economic efficiency because there exist some potential savings
whenever the difference in incremental production costs among utilities is
significant and some extra production capacities exist.

In this dissertation, we propose a two- stage trilateral (buyer,
seller, and intermediate transmission utility) brokerage system for power
transactions. In the first stage, a linear programming model is proposed
to match bids from potential buyers and sellers. In the second stage,
hierarchical criteria (such as the number of intermediate transmission
utilities involved) are employed to determine the transmission routes
based on the transmission costs to the intermediate transmission
utilities.

Finally, we extend the two-stage trilateral brokerage system by
allowing multiple bids from potential buyers and sellers, and by proposing

a nonlinear programming model for transmission route selection. By



employing economic analysis at each stage, we show that significant gains

in economic efficiency can be achieved.

Dissertation Organization

This dissertation is composed of six papers which may be suitable for
publication. In particular, the first paper "OPTIMAL INVENTORY AND
DISPOSAL POLICIES IN RESPONSE TO A SALE" is accepted and will appear in
International Journal of Production Economics. The fourth paper "A
MULTI- PRODUCT EOQ MODEL WITH PRICING CONSIDERATION -- T. C. E. CHENG’S
MODEL REVISITED" appears in Computers end Industrial Engineering: 4n
International Journal, Volume 26, Number 4, Page 787-794, 1994. The fifth
paper "A TWO- STAGE BROKERAGE SYSTEMS FOR ELECTRIC POWER TRANSACTIONS" is
presented at the Fourth Industrial Engineering Research Conference,
Nashville, Tennessee, May 1995, and will appear in the Proceedings of the
Fourth Industrial Engineering Research Conference.

Also, the second paper "OPTIMAL INVENTORY POLICIES IN RESPONSE TO A
PRE- ANNOUNCED SALE" is to be submitted to IIE Transactions. The third
paper "OPTIMIZATION CRITERIA FOR INVENTORY- INVESTMENT IN SETUP OPERATIONS
POLICIES: PROFIT VS. RETURN ON INVESTMENI" is to be submitted to Decision
Sciences. And the sixth paper "A TRILATERAL BROKERAGE SYSTEM FOR POWER
TRANSACTIONS" is to be submitted to International Journal of Energy
Research.

In Chapter 1 "OPTIMAL INVENTORY AND DISPOSAL POLICIES IN RESPONSE TO

A SALE", we construct and analyze an E0Q-type model for a buyer who is



just informed of a temporary sale. The buyer is assumed to have an option
to place special orders and an option to dispose some of his on-hand
inventory. The key feature differentiating our model from the extant
literature on inventory models is that the optimal inventory and disposal
policies are fully integrated and simultaneously determined. The optimal
policies are derived in closed- form from comparing cost savings of various
cases of strategies, and several interesting managerial insights are
obtained by analyzing the closed-form optimal policies.

In Chapter 2 "OPTIMAL INVENTORY POLICIES IN RESPONSE TO A
PRE- ANNOUNCED SALE", we construct and analyze an E0Q- type model for a
buyer who is just informed of a pre-announced sale. By "a pre-announced
sale", we mean the announcement time of the sale occurs before the
beginning time of the sale. Under the pre-announced sale, the buyer is
assumed to have an option to adjust his replenishment strategy before the
sale is effective and an option to place special orders during the
temporary sale. For such a buyer, optimal inventory policies are derived
by comparing cost savings of various cases. By analyzing the optimal
inventory policies, several managerial insights are obtained. For
example, as the period between the announcement time of the sale and the
commencement of the sale increases, the optimal cost saving will increase
or remain the same. In addition, as the duration of the sale increases,
the optimal cost saving will increase or remain the same.

In Chapter 3 "OPTIMIZATION CRITERIA FOR INVENTORY- INVESTMENT IN SETUP
OPERATIONS POLICIES: PROFIT VS. RETURN ON INVESTMENT", we conmstruct and

analyze optimal policies for inventory and investment in setup operations



under profit maximization and under return on investment maximization.
Under a general functional form of investment in setup operations, we
derive the optimality conditions under profit maximization and under
return on investment maximization. By comparing and contrasting the
optimality conditions, several interesting economic implications are
obtained. Also, for two specific functiomal forms of investment in setup
operations (linear and hyperbolic), the closed-from optimal solutions and
the decision making rules are derived. From the solution and rules,
additional economic implications are obtained.

In Chapter 4 "A MULTI- PRODUCT EOQ MODEL WITH PRICING CONS "DERATION --
T. C. E. CHENG’S MODEL REVISITED", we present two major revisions/
corrections regarding a recent paper by T. C. E. Cheng (1990). First, we
note that a critical assumption of the equal replenishment cycle length
for all products is stated, but not incorporated into the mathematical
formulation in Cheng (1990). In this paper, we re-formulate the problem
with the equal replenishment cycle length incorporated and derive the
corresponding Kuhn- Tucker optimality conditions. Next, under the linear
demand assumption, we show that the closed- form solutions provided by
Cheng (1990) may result in non-optimal solutions. The reason is that
Cheng (1990) failed to derive conditions under which the closed- form
solutions may be optimal. In this paper, by employing the trigonometric
methods (see e.g., Porteus, 1985), we derive the optimal closed- form
solution that is unique and obtain the conditions under which the optimal
closed-form solution is valid.

In Chapter 5 "A TW0-STAGE BROKERAGE SYSTEM FOR ELECTRIC POWER



TRANSACTIONS", we propose a two-stage brokerage system for electric power
transactions. At the first stage of the brokerage system, a linear
programming model is set up to maximize the total saving in matching bids
from buyers and sellers. At the second stage of the brokerage system, how
to determine the route(s) to transmit the transacted power is
investigated. By employing economic analysis at each stage, we show that
significant gains in economic efficiency can be achieved.

In Chapter 6 "A Trilateral Brokerage System for Power Tramsactions",
ve extend the two- stage trilateral brokerage system for electric power
transactions discussed in Chapter 5 to the following two aspects. First,
multiple purchase bids and multiple sale bids from each buyer and seller
are allowed in this paper. By formulating a linear program to match bids
from sellers and buyers, we show that the total cost saving can be
significantly improved. Second, instead of employing the pre- specified
rules proposed in Chapter 5, we mathematically formulate the problem of
selecting routes to transmit the transacted power as a nonlinear program
and obtain the corresponding optimal solution. By incorporating the above
two aspects and by employing a numerical example, we show that the
economic efficiency of the brokerage system for power transactions can be
significantly improved.

The rest of this dissertation is organized as follows. First, those
six papers mentioned earlier will be presented sequentially. Next, the
general conclusion about this dissertation follows the sixth paper.
Finally, the literature cited in the general introduction and the general

conclusion are listed.



CHAPTER I.

OPTIMAL INVENTORY AND DISPOSAL POLICIES IN RESPONSE TO A SALE

A paper accepted by

International Journal of Production Economics

Cheng-Kang Chen and K. Jo Min
Depariment of Industrial and Nanufacturing Systems Engineering

Iowa State University

ABSTRACT

Ve construct and analyze an E0Q- type model for a buyer who is just
informed of a temporary sale. The buyer is assumed to have an option to
place special orders and an option to dispose some of his on-hand
inventory. The key feature differentiating our model from the extant
literature on inventory models is that the optimal inventory amd disposal
policies are fully integrated and simultaneously determined. The optimal
policies are derived in closed-form from comparing cost savings of various
cases of strategies, and several interesting managerial insights are

obtained by analyzing the closed- form optimal policiés.
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1. INTRODUCTION

In this paper, an E0Q-type model is constructed and analyzed for a
buyer who is just informed of a temporary sale. Under the temporary sale,
the buyer is assumed to have an option to place special orders and an
option to dispose some of the on-hand inventory. By comparing cost
savings of various cases of strategies (see e.g., Tersine [1]), we obtain
the closed-form solutions of the optimal inventory and disposal policies.
These inventory and disposal policies are fully integrated and
simultaneously determined. By analyzing the closed- form optimal policies,
we obtain interesting managerial insights for the buyer.

The optimal inventory policies under price changes (increases or
decreases), based on the classical economic order quantity (E0Q) models,
have been extensively studied (see e.g., Lev and Weiss [2]). Also, for
temporary price discount, there have been numerous studies investigating
the optimal replenishment and inventory policies (see e.g., Ardalan [3]).
Aucamp and Kuzdrall [4] [5] focus on one-time-only sales and determine the
optimal special order quantities by employing a discounted cash flow
approach. Ardalan [6] deals with a temporary price discount and derives
the optimal inventory policies by employing a net present value method
and/or by incorporating the marketing effect on demand. Aull-Hyde [7]
discusses the optimal ordering rules in response to supplier restrictions
on special order sizes that accompany temporary price decreases. In
Tersine and Barman [8], a composite E0Q model, which can be disaggregated
into several traditional E0{ models, is developed to determine the optimal

levels of order quantity and backorder quantity in response to a temporary
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price discount. We note that the models constructed and analyzed in the
last three papers assume that the sale period is short relative to the
regular EOQ replenishment cycle and the sale period is within a regular
E0Q replenishment cycle. 0On the other hand, the optimal replenishment
strategies for any length of sale time horizon have also been investigated
by a number of researchers (see e.g., Goyal [9] and Tersine and
Schwarzkopf [10]).

Inventory policies with disposal options have also been extensively
studied. Rosenfield [11] analyzes the costs of holding and disposing of
slow-moving inventory under stochastic demand and perishing. Sethi [12]
presents an optimal inventory and disposal model for a buyer faced with
all-unit quantity discounts offered by a seller. Tersine and Toelle [13]
develops models to determine how much stock should be retained and how
much should be disposed of when an excess inventory of that item currently
exists. In their paper, a list of eight reasons for excess inventory is
provided. The numerous studies of these two topics in the literature
reflect the relevance and importance of the topics to both academicians
and practitioners. Also, it is intuitive that, given a temporary sale, a
buyer may find it beneficial to place special orders at a reduced price
and/or dispose some of on-hand inventory at a salvage value because these
transactions may result in reduced total cost for the inventory system. Up
until now, however, there have been few analytical models that integrate
inventory and disposal policies under temporary sales. Hence, considering
the fact that numerous firms utilize E0Q- based decision making processes

for such policies (see e.g., Tersine and Toelle [13]), it is highly
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desirable to construct and analyze E0Q-based models of inventory and
disposal policies under temporary sales.

In this paper, we will focus on optimal inventory and disposal
policies for a buyer who is just informed of a temporary sale. By "just
informed," we mean that the buyer is able to place special orders and make
disposals from that time point on. That is, the emphasis is on when the
buyer is able to respond to a sale. Hence, if the buyer is able to respond
to a sale from a particular time point on due to administrative,
informational, organizational, and/or other reasons, that particular time
point is viewed as the time point at which the buyer is "just informed".
In addition, by "a temporary sale," we mean that the sale period is short
relative to the regular E0Q replenishment cycle. Specifically, we will
restrict our attention to the case that the sale period is less than one
regular E0Q replenishment cycle. We note that the sale period could
actually be quite long in absolute duration (e.g., 3 months) when the
regular EOQ replenishment cycle is also long in absolute duration (e.g., 6
months). Hence, this assumption is not as restrictive as it may first
appear and such an assumption can be found in several publications (see
e.g., Ardalan [3] [6], Aull-Hyde [7], etc.).

The rest of this paper is organized as follows. We first introduce
the model environments and the structure of optimal inventory and disposal
policies. Next, we obtain the closed-form optimal solutions by comparing
the cost saving of various cases. We then present the decision process for
the optimal inventory and disposal policies and provide illustrative

numerical examples. From the numerical results, several managerial



13

insights and properties are derived. Finally, we summarize and comment on

further research.

2. NODEL ENVIRONMENTS
2.1 Assumptions and Definiiions
In our model, a buyer determines the optimal order quantity from his
supplier based on the classical E0Q model. As in numerous E0Q-type models,
ve make the following assumptions.
1) the buyer’s demand is constant over time,
2) no shortage is allowed,
3) replenishment is instantaneous,
4) lead time is zero.
Ve note that, the assumption of zero lead time is made for simplicity and
a positive lead time can be easily incorporated into our model. Also, the
following definitions of the classical E0Q model are employed.
R: the buyer’s demand per unit time (e.g., annual demand).
P: the purchase price per unit to the buyer from the supplier before
and after the sale.
F: the holding cost per unit time as a fraction of the unit purchase
price.
(: the ordering (setup) cost per order (i.e., a fixed cost independent
of the order quantity).

00: the economic order quantity given the purchasing price per unit, P.

e, 0, - (26805,

Ve also note that the inventory holding cost per unit time F is assumed to
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be a fraction of the original unit purchase price not the current or
future unit price.
Let us suppose that the buyer, at time point tb’ is informed that

there is a sale effective now through time point ¢ , and the buyer is

e’
expected to make his decisions regarding his inventory and disposal
policies. As mentioned earlier, we also assume that the sale period is
less than one regular E0Q replenishment cycle (i.e., t, - 1y < (—%%K)O‘s).
We will denote the magnitude of price decrease in the sale by d (d >
0), and the new purchasing price per unit for the buyer will be P - d. Let
us assume that the buyer has an option fo_instantaneously dispose any
inventory at a salvage value of § per unit, where P- d > 5. P- d > § is
assumed so as to exclude the possibility of arbitrages. Let us also assume
that the buyer has an option to place special orders during the sale, at
the reduced price of P - d per unit, regardless of the on-hand inventory
level. Given these two options, the buyer must determine the optimal
inventory and disposal policies. In response to a sale, a special order at
the decreased price (P-d) and/or a disposal at the salvage value of §
during the sale can be beneficial to the buyer because these transactions
may result in reduced inventory holding cost components (such as capital
costs, insurance costs, and taxes). In order to investigate the optimal
inventory and disposal policies for the buyer, we introduce the following
additional definitionms.
g: the level of inventory (stock position) at time point ty

f: the disposal setup cost.

Ve note that, for our model, we will optimally determine the special order
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quantities and the disposal quantities as well as the time points at which
special orders are placed and disposals occur. Finally, throughout the
rest of the paper, we will assume that the products are withdrawn from
inventory on a first-in, first-out (FIF0) basis. This is a reasonable
assumption in numerous practical inventory systems, and it facilitates

tractable construction and analysis of the model.

2.2 The Structure of an Optimal Policy

Given the fact that the buyer is informed of the sale, the special
orders and disposals can be viewed as useful tools to reduce the total
costs of operation. In this subsection, we investigate the special orders
and disposals with respect to quantity and time. Specifically, we will
initially assume that there will be only one special order and one
disposal and derive interesting properties of the optimal policy. Based on
these interesting properties, ve will examine multiple special orders and
disposals. Such an investigation will result in simplification of the
mathematical models for the problem.

Let us denote a special order quantity and a disposal quantity during
the sale by 08 and ), respectively. Also, ve define z to be the time
interval between iy and the time point at which the disposal occurs. In
addition, we define y to be the time interval between i and the time
point at which the special order occurs. Furthermore, we denote the
inventory level (including the remnant inventory) after the special order
is received at time point (tb+y) by az. Figure 1 illustrates two possible

policies for the buyer to follow. One is to dispose P units of on-hand
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Figure 1. General inventory behavior with options to make a
disposal and place a special order
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inventory at time point (tb+z) and to place a special order at time point
(tb+y). We will call this policy the "Response" policy. The other ome is
to ignore both the options to dispose and to place a special order. Ve
call this policy the "Non- Response" policy. In order to measure the cost
saving of the "Response" policy over the "Non-Response" policy accurately,

the total costs of these two possible policies will be calculated from the
)
time point ¢, to the time point (tb+y+_I£") (see e.g., Tersine [1]). The

. q
total cost from the time point t; to the time point (tb+y+—15—) for the

"Response" policy, TUR, can be expressed as follows.

2
16y = 2(g 8 opp o g . ps . (eB2D)pp ¢
o (0 gebyen) (P-d) + SDIE (e )] ()
The corresponding total cost for the same duration for the "Non-Response"

policy, Tﬂﬁz, is given by
2 §. -q+82y
10y, = LA+ 2 (pre(202PP)0-5) (2)

From the relations (1) and (2), the cost saving of the "Response" policy
over the "Non-Response" policy, (S, is given by (S = Tﬂﬁt - Tﬂl. The
objective now is to find the optimal z, y, and ﬂz, which will maximize (S.
Namely,

Maximize €5 = I¢C,, - IC (3)
z,9,4, e

From the maximization of the above problem, the following first

derivatives can be easily obtained.

0.5 (P-d)Fq
ggi _ PE+(26’§PF) - (Pd) - —p 2 (4)
S5 - _oer (5)
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0.5

acs 20RPF)"""+dR

S5 - a2 (g hy0)) (6)
By setting equation (4) equal to zero, the optimal {, can be obtained as
follows

0. 5 0.5, p
(2CRPF) _ (2ckPF) R
0, = =rar OF " F - (ﬂﬂ‘ 72 U, (7)

Ve note that the expression of Uz in equation (7) is identical to the
special order quantity shown in Tersine [1] when on-hand inventory level

is zero. By substituting equation (7) into equation (6), we have the
acs

follow;zi expression for 5y
=y = (FAOF, - (¢-2y-D)] > 0 (8)

Ve summarize those results in the following two propositionms.

Proposition 1. Assume that the buyer makes a disposal of on-hand inventory
during the sale. Then, -%éEL < 0.

Proposition 1 implies that the cost saving will increase when z is
decreased. That is, if the buyer makes a disposal, his optimal strategy is
to dispose as early as possible (i.e., dispose at time point tb vhen z =
0). From the fact that —ggg— < 0, for the case of one dispcsal, it can be
easily shown that the strategy of multiple disposals during the sale

period is never optimal.

Proposition 2. Assume that the buyer places a special order during the
sale. Then, we have:

0.5

_ (202eR)°-%:ap
1ni4,-= P-oF
2) and —ggé— > 0.
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The economic implications of Proposition 2 are as follows. If the

buyer places a special order during the sale, the optimal strategy is to

0.5
replenish the inventory up to the level 0z = (20€£F;)F +dk regardless of

the level of on-hand inventory.

In addition, (from —ggg- > 0), the cost saving will increase when y

is increased. That is, if the buyer places a special order during the
sale, his optimal strategy is to place the special order as late as
possible. We note that this observation is consistent with the Theorem 1
in Ardalan [3]. Also, this observation directly leads us to the following
conclusion regarding multiple special orders.

Let us first consider the case where the level of on-hand inventory
is non-negative at te without any special order. If the buyer places a

special order, the optimal time point to do so is at time point te because
als
dy

special orders during the sale is never optimal.

> 0. Hence, it can be easily shown that the strategy of multiple

For the case where the level of on-hand inventory reaches zero before
tys let us denote the time point at which inventory reaches zero during
the sale by ¢ (i.e., t, < te). According to the Theorem 1 in Lev and
Weiss [2], we note that the buyer can have a special order g, right at ¢
or have some equal-size orders to meet the demand from to to te and then
place a special order qz at ¢, (see Figure 2). The following proposition

determines the possible optimal inventory strategies for the buyer from

time point t, to time point t,
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Figure 2. Optimal inventory behavior from t o to tg
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Proposition 3. Assume that, during the sale, the inventory reaches zero at
time point 2 (to < te). The possible optimal strategy for the buyer from
t, to t, is either to place a special order 0z at ¢, or to place a special
order to meet the exact demand from t, tot, and an additional special
order 0z at te.
Proof:
Ve note that the buyer minimizes the total cost incurred from t, tot,
over the number of orders, n. Hence, we have the following total cost
minimization objective function.

(t,-t,)2R(P-)F

Hinimize T¢,, = nt + 5 + (te-to)R(P-d) (9)

By setting the first derivative of Tﬂoe vith respect to n equal to zero,

the optimal number of orders n is given by
- (¢, - t)
n = p—— (3 (10)
(2¢/((P-2)FR)) R
It can be easily verified that 0 < n < 1. By incorporating the integer

constraint on the decision variable n, we note that the optimal integer
number of orders n* is equal to 0 or 1. If n = 0, the buyer places a
special order ﬂz at ¢,. On the other hand, if n* = 1, the buyer has only
one order of E(%,-1%)) at ¢ to meet the demand from t, to t, and then
places a special order 02 at te' Throughout the rest of this paper, we
will denote the special order quantity which satisfies the demand from t,
to ¢, by ﬂi. Therefore, for the case that the inventory level reaches zero
before tos if the buyer places special orders, then the number of special
orders during the sale is either one or two.

So far, we have presented the potential structure of an optimal
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inventory and disposal policies. Under the assumption that the sale period
is less than one regular E0Q replenishment cycle, we note that it is
possible to have no regular E0Q replenishment point or only one regular
E0Q replenishment point during sale period. The following two sections
will discuss these two scenarios and derive the corresponding closed- form

solutions for the optimal inventory and disposal policies.

3. NO REGULAR EOQ REPLENISHMENT POINT DURING THE SALE (q > R(t,-t}))
8.1 Description of Exclusive and Ezheustive (Cases

In this section, we consider the case that no regular E0Q
replenishment point exists during the sale (i.e., ¢ > £(?,-1;)). According
to Propositions 1, 2, and 3 in the previous section, the feasible policies
can be classified into the following nine mutually exclusive and
exhaustive cases.
Case 1): ¢> D> 0, (¢- D) = B(2,
Case 2): ¢> D> 0, (¢- D) > R(te

tb) and 03 >0at t,.

t,) and § > 0 at ¢,.
tb) and {
tb) and 08 >0at t.

|
H

Case 3): ¢> D >0, (¢g- D) > E(tc 0at ¢,

Case 4): ¢> D >0, (¢g- D) < B(te
Case 5): ¢> D >0, (¢- D) < E(te
at ¢ .

1
t)); d=R(t,-t)) at ¢, and § > 0

Case 6): D = g, 03 >0 at tb.
1
Case 7): D = g, g = R(te- tb) at ¢, and § > 0 at ¢ .
Case 8): ) = 0, 08 > 0 at t,-
Case 9): J = 0 and g, =0 (i.e. "Non-Response" policy).

Given the above nine cases, we will employ Case 9 of no-special-order and
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no-disposal (i.e., wait until the remnant inventory is depleted and then
purchase § = (.%%!_)0-5 for all subsequent orders) as the benchmark (see
e.g., Tersine [1]). Cases 1 through 8 will be examined against this

benchmark to determine the optimal disposal amount at time point ty-

3.2 Cost Saving Comperisons for the case ¢q > R(te—tb)

In this section, we will examine the cost savings of Case 1 through
Case 8 relative to Case 9. We note that the cost savings will be examined
under the aforementioned assumption of no arbitrage (i.e., P - d > §).
Case 1): ¢> D >0, (g- D) = B(t, - tp) and § > 0 at t,

In this case, the optimal disposal quantity 0; is uniquely determined
by the constraint (¢ - J) = E(te - tb). Hence, it can be easily verified
that D] = ¢ - B(¢, - ¢;) and {3, = (.

Case 2): ¢> D >0, (g- D) > B(t, - 1;) and §,> 0at ¢,

When (¢ - D) > R(te - tb) and 0s >0at ¢, the next regular E0{
replenishment occurs (g - 7 + 08)/K time units after ty- In order to
measure the cost saving of Case 2 over Case 9, the total costs of Case 2
and Case 9 will be calculated for the time duration of (g - 2 + 08)/R (see
e.g., Tersine [1]). The total cost for the duration of (¢ - D + 03)/1 for

Case 2, T02, can be expressed as follows.

2 g-D-B(t -1;)
10, = - 05+ (LDPE (O e Vg (payp s

¢E(P-d)F
——ﬂ-——-+6’+ (P-d)gs (11)
The total cost for the same duration for Case 9, T(y,, is given by

2 D
100, = LhE 4 gér(pm(zczpp)”) (12)
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From the relation (11) and (12), the cost saving of Case 2 over Case
9, 052 is given by 052 = T092 - Tﬂz. The objective now is to find the
optimal disposal amount 0; (vhich will maximize the cost saving 052),
Namely, we will solve the following problem for 02.

Max%mize (5 = Tlyy - 10, (13)

From (13), it can be easily verified that

(P-d)B(t,- 1))  (p g om

0= g+ —g—t - LA (14)

ip=4,- la- Dy- R(t, - t)] (15)
By examining Case 3 through Case 8 in a similar way, we have the
following.
Case 3): ¢> D >0, (¢- D) > R(te - tb) and § =0 at ¢,.

0y=q- By (16)

f59 = 0. (17)
Case 4): ¢> D> 0, (¢- D) < B(t, - t;) and g, >0at ¢ .

P-5)R
by =q- - 4, (18)
0;4 =4, (19)
1
Case 5): ¢> D >0, (¢- D) < R(te - 1), 4S=R(te-to) at ¢, and §, > 0
at te.
[(P-d)F(L _-t,)+(P-d)-S5]R

¥ e b

Vs =q- F(2P=d) (20)

05 =4, (21)
Case 6): D = g, ”s >0 at tb.

Dy =g (22)

RN (23)
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1
Case 7): D = gq, 03 = R(te- tb) at i, and ”s > 0 at te.
Dy =gq (24)
q;7 = 0Z' (25)
Case 8): 0 =0, 08 > 0 at t,
o; =0 (26)
Uog = 0, - [e-R(t,-t})] (27)

From equations (16) and (18), we note that the optimal disposal quantities
D; and 0; are strictly less than zero (i.e., ¢ - —Lfiglg— - 00 <0). It
is unrealistic for the disposal quantity to be negative. Hence, Case 3 or
Case 4 will never be an optimal policy and they can be eliminated from any
further consideration. Next, by directly comparing the optimal savings,
(S, €Sy and (S relative to €S}, it can be easily verified that €S] - (S}
>0, €57 - €5, >0 and €5 - €55 > 0. It indicates that the optimal
decisions of Case 1 dominate the optimal decisions of Case 5, Case 6 and
Case 7. Therefore, Case 5, Case 6 or Case 7 will never be an optimal
policy.

So far, we have excluded the possibilities of an optimal policy
existing for Cases 3, 4, 5, 6, and 7. Therefore, the possible optimal
policies can be listed as follows.

Case 1): ¢> D >0, (¢- D) = R(te - tb) and §, > 0 at b
Case 2): ¢> D >0, (¢- D) > B(Z, - t;) and §,>0at 2,
Case 8): J
Case 9): D

0, 08 > 0 at te'

i

0 and ﬂs = 0 (i.e. "Non-Response" policy).
We note that Policy 1 may be the optimal policy only if 05; > 0. The

corresponding conditions under which Case 1, 2, 8, and 9 may be the
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optimal policy are summarized in Table 1. Also, we note that the
conditions in Table 1 are necessary conditions for the optimal policy. If
there are more than one case with the necessary conditions satisfied, then
the optimal cost saving of each case will be computed and the case with

the maximum optimal cost saving will be the optimal policy.

Table 1. The conditions under which case 1, 2, 8, or 9 may be optimal
Case Conditions

*
1 051 >0

2 q> Dg >0, 0;2 >0, q- D; > B(t, - 1), 052 >0
8 655 > 0

9 the conditions for case 1, 2, abd 8 do not hold

4. ONE REGULAR EOQ REPLENISHMENT POINT DURING THE SALE (g < l(te-tb))
4.1 Description of Ezclusive and Ezhaustive (ases

In this section, we consider the case that there exists one regular
E0Q replenishment point during the sale (i.e., ¢ < £(%,-¢;)). Ve note that
Propositions 1, 2, and 3 still hold for the case of ¢ < B(Z,-¢;).
Therefore, the feasible policies can be classified into the following
seven mutually exclusive and exhaustive cases.
Case A): 0 < D < gand §, >0 at t,e
Case B): 0 < D < g, 5 = B(t,-1,) at ¢
Case C): D = ¢, 03 > 0 at tb'
Case D): D = ¢, 01

0’ and 03 > 0 at te.

B(t,- 1) at ty, and § > 0 at ¢,

Case E): D =0, 03 >0at .
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Case F): 0 =0, 01 = RB(t,-t)) at ¢, and § > 0 at ¢,.

0’
Case G): J = 0 and § = 0 (i.e. "Non-Response" policy).

Given the above seven cases, we will employ Case G of no-special-order and
no-disposal (i.e., wait until the remnant inventory is depleted and then
purchase 00 = (_%%@_)0-5 for all subsequent orders) as the benchmark (see
e.g., Tersine [1]). Cases A through F will be examined against this

benchmark to determine the optimal disposal amount at time point tb'

4.2 Cost Saving Comparisons for the case ¢ < R(te—tb)

In this section, we will examine the cost savings of Case A through
Case F relative to Case G. We note that the cost savings will be examined
under the aforementioned assumption of no arbitrage (i.e., P - d > §). By
performing similar formulations and manipulations discussed for the case ¢
> B(2,-t;) in Section 3.2, we can have the following results for cost
saving comparisons.
Case A): 0 < D < ¢ and g,>0at ¢,

Bj =4q- _ﬁfiﬁlf_ -4, (28)

0os = 14, (29)
Case B): 0 < 7 < g, oi = R(te-to) at t, and 03 >0at t,.

(P-d)R(%,- 1) . d-
D; -q- 2P—de b’ E’P d~S§ (30)
Ip=1, (31)
Case C): D = g, 03 >0 at 1.

DZ =gq (32)
”;0 =4, (33)
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Case D): D = g, 01 B(t,- t;) at t;, and § > 0 at ¢,.

S

D; =q (34)

020 = ”z (35)
Case E): D = 0, §, > 0at ¢ .

Dy =0 (36)

p =4, (37)
Case F): D=0, - = B(t-¢ ) at ¢, and § > 0 at ¢,

Dp=0 (38)

0ep=1, (39)

From equation (28), we note that the optimal disposal quantity DZ is
strictly less than zero (i.e., ¢ - —££%§l£— - 00 < 0). It is unrealistic
for the disposal quantity to be negative. Hence, Case A will never be an
optimal policy and it can be eliminated from any further consideration.
Next, by directly comparing the optimal savings, 05; relative to 05; and
05; relative to 05;, it can be easily verified that 05; - USE > 0 and 05;
- 05; > 0. It indicates that the optimal decisions of Case E dominate the
optimal decisions of Case C and the optimal decisions of Case B dominate
the optimal decisions of Case D. Therefore, Case C or Case D will never be
an optimal policy. Also, we note that 05; is strictly greater than zero.
Hence, Case G (i.e., "Non-Response" policy) will never be an optimal
policy.

So far, we have excluded the possibilities of Cases A, C, D, and G
being an optimal policy. Therefore, the possible optimal policies can be
listed as follows.

. 1. .
Case B): 0 < 0 < g, g, = R(te to) at ¢, and § > 0 at t,e

0’
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Case E): 0 =0, 05 >0at ¢t .

Case F): 0 = 0, 0i = R(te—to) at ¢, and { > 0 at ¢,.

o’
The corresponding conditions under which Policies B, E, and F may be the

optimal policy are summarized in Table 2.

Table 2. The conditions under which case B, E, or F may be optimal
Case Conditions

B q> 0; > 0, ﬂS} >0

E
¥

F USF >0

As in section 3.2, we note that the conditions shown in Table 2 are
necessary conditions for the optimal policy. If there are more than one
case with the necessary conditions satisfied, then the optimal cost saving
of each case will be computed and the case with the maximum optimal cost

saving will be the optimal policy.

5. DECISION PROCESS AND NUMERICAL RESULTS

Thus far, we have formulated the mathematical model and derived the
optimal inventory and disposal policies. In this section, we first
elaborate on the decision process that effectively leads to the optimal
policy. Next, under given sets of parameter values, we demonstrate that
with small variations in parameter values, all seven cases (four under ¢ >
R(te-tb) and three under ¢ < £(¢,-1,)) vill become optimal policies. We

also provide additional managerial insights.
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5.1 Decision Process
By comparing the possible optimal policies provided in subsections

3.2 and 4.2, we have the following results.

3 q
1. Considering Case 8 and Case 9 in subsection 3.2, if ( de )0’5( 038)
0

> 1, then Case 9 dominates Case 8. Otherwise, Case 8 dominates Case
9.
2. Considering Case E and Case F in subsection 4.2, if d < e, then Case
E dominates Case F, where

» _(PE+(20TPF)0'5 ) ¢ 2

Q= I R(te-tb)-q)(2+F(te-tb-(Q/E)))'

Otherwise, Case F dominates Case E.
By incorporating the results described above, the decision process

can be simplified as the diagram shown in Figure 3.

5.2 Numerical Resulis

In this subsection, we demonstrate that all seven cases can be
optimal policies with only one or two changes in values of parameters. To
achieve our objective, we select the discount magnitude d and the on-hand
inventory level ¢ at t; as the parameters whose values change. Example 1
is designed to study the cases of ¢ > E(te~tb) while Example 2 is to study
the cases of ¢ < E(te—tb). The following values of the parameters are
employed for both Example 1 and Example 2: P=100, B=800, =0, $=18,
(=5490, and F=0.5.
Example 1. Given the sale period te-tb=0.3, we perform the sensitivity

analysis on optimal inventory and disposal polices with respect to on-hand



Figure 3. The decision process for the optimal inventory and disposal policies
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inventory ¢ and discount magnitude d. Table 3 presents the results.

By examining Table 3 carefully, we make the following interesting

observations for Example 1.

1)

2)

3)

4)

Vhen the discount magnitude d is sufficiently small and the on-hand
inventory level ¢ at ¢, is large enough (e.g., d =1 and ¢ > 275),
the policy of Case 9 is optimal (i.e., "Non-Response" policy).

When the discount magnitude 4 is neither too large nor too small
(e.g., d = 20, 35 or 50), the policy of Case 8 is optimal (i.e., do
not dispose at tb but place a special order 0;3 at te) regardless of
the on-hand inventory level ¢ at ty-

When the discount magnitude d is reasonably large (e.g., ¢ = 65) and
the on-hand inventory level ¢ at tb is sufficiently high (e.g., ¢ 2
310), the policy of Case 2 is optimal (i.e., dispose 32 at 1 and
place a special order 0;2 at te).

When the discount magnitude d is sufficiently large (e.g., d = 80),
the policy of Case 1 is optimal (i.e., dispose D; at t, and place a
special order 0;1 at te) regardless of the on-hand inventory level ¢

at tb.

Example 2. All the parameter values are the same as Example 1 with the

exception that the sale period t, - ty =0.5. The corresponding results

are shown in Table 4.

By examining Table 4 carefully, we make the following interesting

observations for Example 2.



Table 3. Optimal inventory and disposal policies for ¢ > R(te-tb)

d=1 d=5 d=20 d=35 d=50 d=65 d=80
q=245 | 8 | 357 2550 15621 40297 87024 184152 445152
q=215 |9 ] 0 1650 14265 38485 84756 181429 442393
g=310 |9 © 667 12740 36418 82147 178286 439246
g=3s5 |9 ] 0 0 11276 34401 79576 175216 436176
g=380 |9 © 0 9874 32433 77043 172222 433182
g=415 | 9| © 0 8532 30515 74548 169305 430264

€e



Table 4. Optimal inventory and disposal policies for ¢ < Il(te—tb)

d=1 d=5 d=20 d=35 d=50 d =65 d=80
q=20 | F | 39 2413 14825 38842 84910 181380 441656
=65 F | 162 1964 13550 36742 81948 177628 437078
g=110 |E| 13 1396 12175 34559 78995 173832 465084
gq=155 |E| 13 706 10698 32295 75942 169992 427989
g=200 |E| 13 335 9119 29948 72826 166107 423619
g=245 |E| 13 335 7440 27518 69647 162178 419376
g=245 |E| 13 335 6370 25007 66405 158204 415260
q=245 |E| 13 335 6370 24011 63702 154224 411270
g=245 |E| 13 335 6370 24011 63702 153795 407693

¥e
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1) Vhen the discount magnitude d is sufficiently small (e.g., d = 5) and
the on-hand inventory ¢ at ¢, is sufficiently high (e.g-, ¢ > 200),
the policy of Case E is optimal (i.e., do not dispose at ty but place
a special order UZE at to).

2) Vhen the on-hand inventory ¢ at iy is sufficiently small (e.g., ¢ =
20 or 65), the policy of Case F is optimal (i.e., do not dispose at
4 but place a order ﬂi = E(te-to) at ¢ and place a special order
0;F at te) regardless of the discount magnitude d.

3) When the discount magnitude ¢ is sufficiently high (e.g., d = 80) and
the on-hand inventory level ¢ at ty is neither too high nor too low
(e.g., 110 < ¢ £ 335), the policy of Case B is optimal (i.e., dispose

0; at tb’ place a special order 0§ = B(te-to) at ¢ , and place a

0’
special order 023 at te).

Furthermore, we note that the following properties can be easily verified

by way of simple calculus.

Property 1. —ggg— < 0 for all cases.
> 0 for all cases.

acs 9%¢s
7d 0d°
Property 1 implies that when the on-hand inventory g increases, the

Property 2. >0 and

optimal cost saving for the inventory and disposal policies will decrease

or remain the same.

Meanwhile, Property 2 implies when the discount magnitude d
increases, the optimal cost saving for the inventory and disposal policies
will increase or remain the same. In addition, the difference in the

increase of the optimal cost saving increases as the discount magnitude d

increases.
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6. CONCLUSIONS

In this paper, we constructed and analyzed an E0{-type model for a
buyer who was just informed of a temporary sale. For such a buyer, optimal
inventory and disposal policies were derived by comparing cost savings of
various cases. By analyzing the optimal inventory and disposal policies,
several managerial insights were obtained. In particular, as the discount
magnitude d increases, the optimal cost saving will increase or remain the
same. On the other hand, as the on-hand inventory level g at ty
increases, the optimal cost saving will decrease or remain the same (this
is consistent with Theorem 1 in Ardalan [3]).

This paper can be viewed as an exploratory investigation of
integrating the inventory policies in response to sales and the inventory
policies with disposal options. Therefore, numerous extensions that will
enhance the model presented in this paper can be made. For examples, one
class of extensions can be made with respect to the duration of the sale.
That is, the duration of a sale may be relatively long (e.g., longer than
one regular E0f cycle).

Another class of extensions can be made with respect to the time at
hich the sale is known to the buyer and to the time at which the sale is
in effect. An additional class of extensions can be made with respect to
policies of a seller regarding buyers’ disposals. Implicitly, in this
paper, it is assumed that the seller will not react to the buyers’
disposal (if any). It would be of interest to investigate several possible
policies of a seller. e.g., prohibition of disposals, benefit sharing of

disposals, etc. We believe that such extensions will improve the
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applicability in practice of the inventory/disposal models in response to
sales. We hope this improvement in applicability, in turn, will result in

increased economic efficiency for the buyer (as well as the seller).
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ABSTRACT

We construct and analyze an E0Q- type model for a buyer who is just
informed of a pre-amnnounced sale. By "a pre-announced sale", we mean the
announcement time of the sale occurs before the beginning time of the
sale. Under the pre-amnnounced sale, the buyer is assumed to have an
option to adjust his replenishment strategy before the sale is effective
and an option to place special orders during the temporary sale. For such
a buyer, optimal inventory policies are derived by comparing cost savings
of various cases. By analyzing the optimal inventory policies, several
managerial insights are obtained. For example, as the period between the
announcement of the sale and the commencement of the sale increases, the
optimal cost saving will increase or remain the same. In addition, as the
duration of the sale increases, the optimal cost saving will increase or

remain the same.
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1. Introduction

In this paper, an E0Q-type model is constructed and analyzed for a
buyer who is just informed of an announcement from his supplier that there
will be a temporary sale in the near future. Under the pre-announced
sale, the buyer is assumed to have an option to adjust his replenishment
strategy before the temporary sale is effective and an option to place
special orders during the temporary sale. By comparing cost savings of
various cases of strategies (see e.g., Tersine, 1994), we obtain the
optimal solutions for the inventory replenishment strategies. By
analyzing the optimal solutions, we obtain interesting managerial insights
for the buyer.

The optimal inventory policies under price changes (increases or
decreases), based on the classical economic order quantity (E0Q) models,
have been extensively studied (see e.g., Taylor and Bradely, 1985; Lev and
Veiss, 1990). Also, for temporary price decreases, there have been
numerous studies investigating the optimal replenishment and inventory
policies (see e.g., Ardalan, 1988, 1994 or Aull-Hyde, 1992). Ardalan
(1994) deals with a temporary price discount and derives the optimal
inventory policies by employing a net present value method and/or by
incorporating the marketing effect on demand. Aull-Hyde (1992) discusses
the optimal ordering rules in response to supplier restrictions on special
order sizes that accompany temporary price decreases. In Tersine and
Barman (1995), a composite E0Q model, which can be disaggregated into
several traditional E0Q models, is developed to determine the optimal

levels of order quantity and backorder quantity in response to a temporary
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price discount. We note that the models constructed and analyzed in the
last three papers assume that the sale period is short relative to the
regular EQQ replenishment cycle and the sale period is within a regular
E0Q replenishment cycle. Also, there exists an implicit assumption in the
last three papers that the announcement time of the temporary sale is
identical to the beginning time of the sale.

The numerous studies of the topic of the inventory policies with
temporary price discounts in the literature reflect the importance of the
topic to both academicians and practitioners. Also, it is intuitive that,
given a pre-announced temporary sale, a buyer may find it beneficial to
adjust his replenishment strategy before the temporary sale amnd/or place
special orders during the sale at a reduced price because these
transactions may result in reduced total cost for the inventory system.

Up until now, however, there have been few analytical models that
investigate the inventory replenishment policies under pre- announced
temporary sale. Hence, considering the fact that numerous firms utilize
E0Q- based decision making processes for such policies, it is highly
desirable to construct and analyze E0Q-based models of inventory policies
under pre-announced temporary sale.

In this paper, we will focus on optimal inventory replenishment
policies for a buyer who is just informed of an announcement from his
supplier that there will be a temporary sale in the near future. By "just
informed," we mean that the buyer is able to respond to the temporary sale
from that time point on. That is, the emphasis is on when the buyer is

able to respond to a sale. Hence, if the buyer is able to respond to a



42

sale from a particular time point on due to administrative, informational,
organizational, and/or other reasons, that particular time point is viewed
as the time point at which the buyer is "just informed". Also, we want to
point out that the implicit assumption that the announcement time of the
temporary sale is identical to the beginning time of the temporary sale in
previous publications (see e.g., Ardalan, 1988, 1994; Aull-Hyde, 1992;
Tersine and Barman, 1995) is relaxed in this paper. In contrast to the
previous literatures, we assume that the announcement time of the
temporary sale occurs earlier than the beginning time of the temporary
sale. This is what we mean by "pre-announced". In addition, by
"temporary sale," we mean that the sale period is short relative to the
regular EOQ replenishment cycle. Specifically, we will restrict our
attention to the case that the sale period is less than one regular E0(
replenishment cycle. We note that the sale period could actually be quite
long in absolute duration (e.g., 3 months) when the regular E0Q
replenishment cycle is also long in absolute duration (e.g., 6 months).
Hence, this assumption is not as restrictive as it may first appear and
such an assumption can be found in several publications (see e.g.,
Ardalan, 1988, 1994; Aull-Hyde, 1992; Tersine and Barman, 1995).

The rest of this paper is organized as follows. We first introduce
the model environments and the possible sets for the pre- announced
temporary sale. Next, we obtain the optimal solutions by comparing the
cost saving of various cases. We then present the decision process for
the optimal inventory replenishment policies and provide illustrative

numerical examples. From the numerical results, several managerial
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insights and properties are derived. Finally, we summarize and comment on

further research.

2. Nodel Environments: Assumptions and Definitions
In our model, a buyer determines the optimal order quantity from his
supplier based on the classical EOQ model. As in numerous EQQ-type
models, we make the following assumptions.
1) the buyer’s demand is constant over time,
2) no shortage is allowed,
3) replenishment is instantaneous,
4) lead time is zero.
Ve note that, the assumption of zero lead time is made for simplicity and
a positive lead time can be easily incorporated into our model. Also, the
following definitions of the classical E0Q model are employed.
R: the buyer’s demand per unit time (e.g., annual demand).
P: the purchase price per unit to the buyer from the supplier before
and after the temporary sale.
F: the holding cost per unit time as a fraction of the unit purchase
price.
C: the ordering (setup) cost per order (i.e., a fixed cost independent
of the order quantity).

00: the economic order quantity givem the purchasing price per unit, P.

ie., §, = (—ggﬁ—)o'5.

We also note that the inventory holding cost per unit time F is assumed to

be a fraction of the original unit purchase price.
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Let us suppose that the buyer, at time point t, is informed that
there is a sale effective from tb through te, and the buyer is expected to
make his decisions regarding his inventory policies. As mentioned earlier,
we also assume that the sale period is less than one regular E0Q
replenishment cycle (i.e., ¢, - #; < (—%gl)o‘s). Also, we note that the
relationship of t, <ty <t, holds throughout the rest of this paper.

Ve will denote the magnitude of price decrease in the sale by d (d >
0), and the new purchasing price per unit for the buyer will be P - d
during the sale. Also, we denote the on-hand inventory level (stock
position) at time point t, by ¢ and the ¢ units of inventory will be
depleted at time point t, (i.e., i, =1, + —%—). Let us assume that the
buyer has the option to respond to the pre-announced temporary sale after
the buyer is informed of the sale at i, Given this option, the buyer
must determine the optimal inventory policies from ta to te. In response
to the pre-announced temporary sale, adjusting the inventory replenishment
strategy from ¢  to i, and/or placing special order(s) at the decreased
price (P - d) during the sale can be beneficial to the buyer because these
transactions may result in reduced total cost of the inventory system. By
examining the time sequences of ty tb’ tys and t,» we can have the
following three mutually exclusive and exhaustive sets of precedence
relationships under the assumption that the sale period is less than ome
regular E0Q replenishment cycle.

Set A: t, <ty < t <t.
Set B: ta < tb <t <t

Set C: tast0<tb<te.
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For our models, we will optimally determine the special order
quantities and the time points at which special orders are placed for the
above three sets. The following three sections will investigate these
three sets and derive the corresponding optimal solutions for the
inventory policies. Also, we note that the earliest time for the buyer to
respond to the announced temporary sale is at ¢ for Set A while they are
at t for Set B and Set C. Finally, throughout the rest of the paper, we
will assume that the products are withdrawn from inventory on a first-in,
first-out (FIF0) basis. This is a reasonable assumption in numerous
practical inventory systems, and it facilitates tractable construction and

analysis of the model.

3. Set A: t, <t <t <t

In this section, we consider the set that ta, tb’ and te are all
within an regular EOQ replenishment cycle (i.e., t, <ty <t <1).
Figure 1 illustrates two possible policies for the buyer to follow. O0One
is to place a special order during the sale. We will call this policy the
"Response” policy. The other one is to ignore the option to place a
special order during the sale. We will call this policy the
"Non- Response" policy. The following Lemma determines the optimal time

point at which the special order is placed for the "Respond" policy.

Lemma 1. The optimal time point at which the special order is placed for
the set A: ta < tb < te < to is at te.

Proof: See Appendix.
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We will denote the on-hand inventory level at t, by ¢ (i.e., g =¢q- R(te
- ta)). Also, we will denote the inventory level at ¢, after the special
order (including the inventory before the special order, i.e., g) by 08.
In order to measure the cost saving of the "Respomse" policy over the

"Non- Response" policy accurately, the total cost will be calculated from
q
t, to (te + —]é—) (see e.g., Tersine, 1994). The total cost from the time

q
point t, to the time point (te + —If—) for the "Response" policy, TCR, can
be expressed as follows.

-2 -
16y = LF 4 (0D (P-d) + (40D (P (P F

0-)%P-a)F
+ — qu + C (1)

The corresponding total cost for the same duration for the "Non- Response"

policy, TUNR’ is given by
-2 g, - q
PF
6yp = Lsp— + —>— (PR + J 2CHPF) (2)

From the equations (1) and (2), the cost saving of the "Response" policy

over the "Non-Response" policy is given by 61 = TUN - TCB. The objective
now is to find the optimal 08 which will maximize 01. Namely,

S

From the maximization of the above problem, the following first

derivatives can be easily obtained.

% ma I g-gp  UsOFIF
a7, I T z

By setting equation (4) equal to zero, the optimal 0;01 can be obtained as

follows
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dR + J2CRPF_ _ PR +  2CRPF R Rd P
”26’1= (;’-d)F - (;-d)F ‘T=W+Ta—00 (5)

Equation (5) implies that if the buyer places a special order during the

sale, the optimal strategy is to replenish the inventory up to the level

{0, = dR(; Y 3;%]] at ¢, regardless of the level of on-hand inventory at

t,- We note that the expression of 0;g1 in equation (5) is idemtical to
the special order quantity shown in Tersine (1994) or Ardalan (1988) when

on-hand inventory level is zero. Also, we will denote the quantity

dk(; Y 3;%?] by 0; throughout the rest of this paper.

By substituting the closed-form solution of 0;€1 into (3) and by
performing some algebraic manipulations, we can obtain the optimal cost
saving 6; as follows.

* -

qs - q )2
q( P )0.5
0 P_a
In such a case, it is not always advantageous to place the special order

6= 0 [

- 1] (6)

during the sale. By examining the expression of 0;, we can have the
following decision-making rules for the set that ¢ , ¢;, ¢, and ¢ are

all within a regular EO replenishment cycle.

If (0: -9 > 00(—?—¥-2—)0'5, then place a special order up to the
inventory level 0: at 1.
Else ignore the announced temporary sale.

Exhibit 1. The decision-making rule for the set of i, <ty <t, <t
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We note that the result of Exhibit 1 is identical to the result in Tersine
(1994) or Ardalan (1988) since t,) ty, and ¢ are all within a regular E0Q
cycle. We also note that, throughout the rest of the paper, we will
employ the "Non-Response" policy as the benchmark and formulate the cost

savings as the performance criteria.

4. Set B: ta < tb < to < te

In this section, we consider the set that t, and i, are wvithin an E0{
replenishment cycle while te is within the E0Q replenishment cycle which
follows the cycle contains ¢ and i, (i.e., t, <ty &ty < te). Ve note
that the buyer can either place a special order right at t, or place a
special order to meet the exact demand from t, to te and an additional
special order at te' Figure 2 illustrates these two "Respond" policies as
well as the "Non-Response" policy for the buyer to follow. Ve will first
examine the policy that places a special order at to. By performing

similar formulations and manipulations discussed for the set t, < tb <t

< t, and by considering the duration from t, to (to + —If—), we can easily
obtain the cost saving 62 of the policy that places a special order at to

over "Non-Response" policy as follows.

Ma.xiqmize 6y = —ZQ—[(P- d)R + yIEP-O)F |+ (LS#) (PR + J2CEPF)
S
G- aF
- C- 4 (P-d) - ———— (7

From the maximization of the above problem, the following first derivative

wvith respect to 0s can be easily obtained.
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Figure 2. The case for t‘2 < tb < to < te
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95  pp . JOCEPF (P - d)Ff,

[ T - (P-d) - — (8)
By setting equation (8) to zero, the optimal 0;62 can be obtained as

follows.

R+ JICEPF PR+ JOURPF R _ Rd . P
Voo CU) =07 =" rar 7= aF * 7a%®

We note that the expression of 0;02 in equation (9) is identical to the

special order quantity shown in equation (5). By substituting the
closed-form solution of 0;02 into 02 and by performing some algebraic

manipulations, we can obtain the cost saving as follows.
*

x _ ((P- d) 03
6. =
(go

; . - 1)° (10)

From equation (10), we can easily concluded that, it is always
advantageous to place the special order 0; at t during the sale for the
set of ta < tb < to < te‘

Now we proceed to examine the policy that places a special order to

meet the exact demand from t, tot, and an additional special order at L,

J
By considering the duration from t, to (te + —Ii—), ve can easily obtain
the cost saving 03 of the policy that places a special order to meet the
exact demand from to to ¢, and an additional special order at te over the
"Non- Response" policy as follows.

Ma.xiqmize 6y = -go—[(P-d)R + VIEPDF] + [(¢, - &) + _zs_ ]

S

g G3(P - d)F
) (PR + V2ORPF) - € - § (P - d)--s—(ﬂ—)_

B(t, - t )22 - O)F
)

- € B(t, - t)(P- d) - (11)

From the maximization of the above problem, the following first derivative
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with respect to 08 can be easily obtained.

36 (P - dHf
aa:: - PE+J;2TITT_ _ (P-d)' S (12)

By setting equation (12) to zero, the optimal §, can be obtained as

follows.

* * dR + " 2CRPF _ PR+2TRPF R Rd P
b3 G ) =—p—F = "F-aF " F=1ar " ra ¥ (13

We note that the expression of 0:63 in equation (13) is idemtical to the

special order quantity shown in equation (5). The following proposition
determines the optimal inventory strategies between the policy of placing
a special order right at t, and the policy of placing a special order to

meet the exact demand from to to te and an additional special order at te.

Proposition 1. Assume that, t, occurs during the sale. Also, we denote
the EUQ at price (P - d) by b (i-e-, b= (%)0'5).

0, - @2 PP _ ,
If (te - to) < T , then place a special order 05

at to.
Else, place a special order to meet the exact demand from t, to t,
and an additional special order 0; at te'
Proof:
By comparing cost savings of the policy that places a special order G:
right at to and the policy of placing a special order to meet the exact
demand from to to ¢, and an additional special order 0: at t, (i.e., 0; Vs
0;), ve note that if G; - Gg > 0, then a special order of 0: at to will be
the optimal policy. After some eliminations of identical terms, we can

obtained the following relation for - €.
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. (t,-1,)%R(P-d)F
6 - 63=C+ 5 + (b, 1,)R(P-d) - (1, 1,) (PR+y/ 2CRPF")

After some algebraic manipulations, we note that G; - 0; > 0 if (te - to)

#2  22,0.5 _(p*2 _ 72,0.5
> fs * (0; F) or (t,- t)) < /s (02 £ . Ve note that

g+ @2 - )0
£

(1, - t,) >
- tb) is less than one regular E0Q replenishment cycle. Therefore, the
2 72,0.5
000
7 .

vill not be further considered since (1,

only condition that enables 0; - 6; >0 is (te - to) <
Ve note that Proposition 1 is an extension of Corollary 1 in Ardalan
(1988) which only considers the policy of placing a special order 0; at
to. Ve note that Proposition 1 also explicitly states the decision-making
rule for the set of t, <ty S, <1,

5. Set C: ta < to < tb < te

In this section, we investigate the set that ¢ (= t, + —%—) comes
before the beginning time of the sale i, (i.e., 1, < ¢ < 1, < 1,).
According to the Theorem 4 in Lev and Weiss (1990), we note that all of
the orders placed from ¢ to ¢, (excluding the time point ty) are of the
same size. Furthermore, we assume that the inventory of the last order
before ty is depleted at time point t, (i.e., ty < i, < ie). Let us
denote the integer number of the equal-size orders from t, to t by n. We
note that the possible optimal strategy for the buyer from t, to i, is
either to place a special order ”s at 1 or to place a special order to
meet the exact demand from t, tot, and an additional special order 03 at

ty Figure 3 illustrates these two possible optimal strategies as well as



Qs

54

------ Do not respond to the sale

w=rmmss.Respond to the sale

’
/’/

I'-—--’

ta to tb tx te

Figure 3. The case for ¢ < ¢ < 1y < 1,
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the "Non-Response" policy for the buyer to follow. Throughout the rest of
the paper, we will denote the strategy of placing a special order 03 at tz
as "One Special Order Policy" while the strategy of placing a special
order to meet the exact demand from tz to te and an additional special
order 08 at te as "Two Special Orders Policy". The following two

subsections will investigate these two possible optimal strategies.

5.1 One Special Order Policy
In this subsection, we investigate the strategy of placing n
equal- size orders from to to tz and a special order 08 right at tz. As in

the preceding sections, we will employ the "Non-Response" policy as the

benchmark. By considering the duration from ¢ to (tz + "Ii')’ we can
easily obtain the cost saving of the "One Special Order" policy over the
"Non- Response" policy as follows.
¢
lla.xim:éze 6y = [— + (t,- t,)](PR + yZCRPF) - nC - PR(t_ - t)
matpods

2 2
BPF(t_- t) (P - d)F
z 0 s
) n R Gl d)”s I R (14)
subject to: ty <t <t

[~

e
n 1s an integer

The above objective function 04 is for the case where there is no regular
E0Q replenishment point during the sale. If there is a regular E0Q

replenishment point during the sale, the the objective function becomes as

follows.
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{ g7
Maxinize G = (32) [(P-d)R + VETRP-A)F] + [2p2 + (t-1,)]

sty
RPF(i_ - t,)°
(PR + VICEPF) - nf - PR(i-t) - 5
¢ (P-d)F
- 0o (P - Sy (15)

We note that the difference between objective functions 04 and 05 is
constant. Therefore, the first derivatives of 04 and 05 are identical.
From the maximization of the above problems, the following first
derivative with respect to 03 can be easily obtained.

664 a6

5 PR (P - d)F§
o ", - b (16)

By setting equation (16) to zero, the optimal 03 can be obtained as

follows.

dR PR+ JITRPF R
Uor Flygu=ly) = S g7 = —roajF T
war * 77l (17)

We note that the expression of 08 in equation (17) is identical to the

special order quantity shown in equation (5). We also note that the
special order quantity is independent from the other decision variables n
and i

Given by the determination of the integer decision variable n can be
treated as a finite horizon EQQ problem which is proposed and solved by
Schwarz (1972). From Schwarz (1972), we note that the optimal solution

. . 2 PRF\0.5

for n, given ¢, is n(¢,) = [ 0.5 + (0.25 + (- %)) 37 | where | ¥ |
is the largest integer less tham or equal to Y. Throughout the rest of
this paper, we will denote the optimal solution of n from to to tz, t to

0
ty, and ¢ to ¢, by n(tz), n(tb), and n(te), respectively. Moreover we
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note that n(2;) < n(¢;) < a(¢,) and n(%,) is equal to either n(2;) or
n(t;) + 1 (this is due to the assumption that the sale period is less than
one regular EOQ replenishment cycle).

Given the integer variable n, we can have the first derivative with

respect to tz as follows.
a6 06 (¢, - t )RPF
e (= ) = (PR + y2OPF) - —2 2 pj (18)

T T

By rearranging equation (18), we can easily obtain the following relation.

Bt - )
g, = (2508 . =0 (19)

n

The economic implication of relation (19) states that the optimal solution
of t, will be the regular E0Q replenishment point during the sale.
Therefore, if there is a regular E0f replenishment point during the sale,
then the optimal tz occurs at the regular E0Q replenishment point during
the sale. On the other hand, if there is no regular E0Q replenishment
point during the sale (i.e., 7 and t, are within the same E0Q regular
replenishment cycle), then the optimal solution of tz occurs at tb or te.
This can be easily observed from Figure 4 where we plot cost saving as y
axis and t, as T axis under the integer constraint of the decision
variable n. In Figure 4, the maximum cost saving occurs at the regular

EDQ replenishment points. In order to determine the optimal solution of
t,, ve define n by L—————p—————fj and # = n + 1. By observing Figure 4
0

carefully, we can conclude the decision-making rule shown in Exhibit 2 for

the case that only one special order is allowed during the sale.
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If n(¢,)=n (vhich implies n(¢;)=n), then t;=tb and n*=n.
Else if n(t,)=n (which implies a(t,)=n), then i =i and n*=n.
Else
if 64(ty, m) > 64(t,, n) then i = ¢, and n'= n,
* ¥ _ -
else t,=1t,and n° = n.

Exhibit 2. The decision-making rule for "One Special Order" Policy

5.2 Two Spectial Orders Policy

In this subsection, we will examine the strategy of placing =
equal- size orders from t, tot., a special order E(te - tz) to meet the
exact demand from t, to ¢, and an additional special order 08 at . As in

the preceding sections, we will employ the "Non-Response" policy as the

o . S
benchmark. By considering the duration from ¢, to (¢, + —5—), we can
easily obtain the cost saving of the "Two Special Orders" policy over the

"Non- Response"” policy as follows.

2
RPF(t -1
Maximize 06 = [—gf + (te-zo)](Pg +  2CRPF) - n( - ( T 0)

mytd "
B(P-d)F(t -1t.)2
- PR(tt)) - C- ( )2(te 2 R(P-d) (1, t,)
I,
- 6 (P-d)q, - 5— (20)

subject to: tb <t <t

n is an integer
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As in "One-Special Order" policy, we note that the above objective
function is for the case where there is no regular E0Q replenishment point

during the sale. If there is a regular E0Q replenishment point during the
sale, the the objective function becomes as follows.
. . 00 03'00
l;a:;mue 6, = () [(P-d)R + 2UR(P-d)F] + [ + (2, t,)]
p’%s

RPF(1 - 1)°
(PR + JICRPF) - n¢ - —20 - PR(t_1 )

2
R(P-d)F(t -t.)
- ¢ - T - B(P-d)(t,-t,) - € - (P-d),
(- d)F
- _S._T_ (21)
Ve note that the difference between objective functions 06 and 07 is

constant. Therefore, the first derivatives of 06 and 07 are identical.
From the maximization of the above problems, the following first

derivative with respect to Qs can be easily obtained.

a6 a6 (P - d)F§
6 _ T _ PR+ J2ORPF (7 - d) - S (22)
. o7 T —r
By setting equation (22) to zero, the optimal § ¢ can be obtained as
follows.
* _p* _p*\ _ dR + J2CRPF _ PR + J2(RPF R
bsoe Clserly) =~ 7 =—(~-qF T
_ Rd P
=w-ar * 7l (23)

We note that the expression of 0; in (23) is identical to the special
order quantity shown in (5). Ve also note that the special order quantity
is independent from the decision variables n and ¢ z

For the computational convenience, we will ignore the two constraints

that 2, < ¢ g < tpand n is an integer at the beginning and then reconsider
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them as we proceed. In such a case, we can have the following derivatives

with respect to {_ and n.

z
06 T4 RPF(t -t )
6 7
el ek ;f O PR+ (1t )R(P-A)F + R(P-d)  (24)
2
a6 06 RPR(t_ - t)
6 _ 7 _ T 0
- P (25)

By setting equation (25) equal to zero, the following relation can be

easily obtained.

(t. - t )R
q, - ( 208 )0.5 - T _ 0 (26)
96 96,
By substituting (26) into (24), it can be easily found that ——(= —7—)
T z
d6g 96,
< 0. This implies that the possibility for — (= a7 ) = 0 exists
T T

If n(t,) = n(ty) = n, then t; = 1y, a special order to meet the demand
from ty to t,, and an additional special order 0; at ¢,.
Else let n = n, calculate i,
if ¢y <t <, and n(t,) = n, then a special order to meet the
demand from t; to te, and an additional special order 0; at te.
else
if t, < tp, then t; = ty, a special order to meet the demand
from ty to t,, and an additional special order 08 at te.
else the strategy of placing two special orders during the

sale is never optimal.

Exhibit 3. The decision-making rule for "Two Special Orders" policy
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} 96 06
wvhen n = n (because n = n will result in 7 (= —g7—) <0). Given n =
z T

n, by rearranging equation (24), we can easily obtain tz as follows.
Fte(P - d) + (PFto/E) - d

z F(P + (P/n) - d)
Ve also note that t, should meet the constraint t, £t < t, and n(tz) =

n. In summary, ve can conclude the decision-making rule shown in Exhibit

3 for the case of two special orders during the sale.

5.3 Decision Process for the set ta < to < tb < te

In this section, we fist comsider the case that there is no regular

R(t, - t)
E0Q replenishment point exists during the sale (i.e., | b 0 = |
0
R(t, - 1)
7 |). According to Exhibit 2 and Exhibit 3 in the sectioms 5.1
0

and 5.2, the potential optimal policies can be classified into the
following five mutually exclusive and exhaustive cases. Among these five
mutually exclusive and exhaustive cases, the first two cases are "One
Special Order" policies, the third and the fourth cases are "Two Special
Brders" policies, and the fifth case is "Non-Response" policy.

B(ty - t,)

Case 1): n(%;) equal-size orders of —-—_ET?ZTQ__ to meet the demand from

to to tb, then a special order ﬂs at tb.
B(t, - t,)
Case 2): n(te) equal- size orders of W) to meet the demand from
e

t, to ¢, then a special order 08 at te'
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t, - 1)
Case 3): n(tb) equal- size orders of ____%(7_72_— to meet the demand from
b

t, to t,, a special order of E(te - tp) to meet the demand from

ty to tys then an additional special order ﬂs at ¢,.
R(t,_ - t)
Case 4): n(tz) equal- size orders of ————%(?—TQ-— to meet the demand from
b

t, to t,, a special order of (%, - ¢ ) to meet the demand from

t, to te, then an additional special order 08 at t,.
Case 5): "Non-Respomse” policy.
By employing the Exhibit 2 and Exhibit 3, we can have the decision process
tree as shown in Diagram 1.

Ve now proceed to consider the case that there is one regular E0Q
E(tb-t ) R(t-t)
=
0 0
According to Exhibit 2 and Exhibit 3 in the sections 5.1 and 5.2, the

replenishment point exists during the sale (i.e., |

potential optimal policies can be classified into the following three
mutually exclusive and exhaustive cases. Among these three mutually
exclusive and exhaustive cases, the first case are "One Special Order"
policy, the second and the third are "Two Special Orders" policies. In

this case, "Non-Response" policy will never be an optimal policy.

R(t -¢)
Case A): L———%——g- equal- size order of 0 to meet the demand from t, to
0
B(t,-t,
g2 Where ¢ =t +L———F————J(—]r0 then a special order §  at i

R(t, - t)
Case B): n(tb) equal-size orders of ————%r?—jg—— to meet the demand from
b

t, to t;, a special order of £(f, - t,) to meet the demand from

tb to te, then an additional special order 03 at te'
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1 special order 1 or 2special orders
Yes No

Yes

OIS

‘ No
Givenn=n
0 NO Obtain tx
Yes No
o Nq @ Yes e Yes e
Yes No
e Yes NG 9

O

1’ ~2
AP LA L RQ‘Z < ©

)2 +\2RP
** : (11, 2CRPF - C (‘ezf(o:jl)’l’ N toz)nRPF

ooy LN D

@ : check CSi > 0 or not, if Yes case i is optimal, if not "Non-Response” is optimal

Diagram 1. Decision prdcess - no regular F00Q replenishment point
during the sale
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B(t_ - t)
Case C): n(t_) equal-size orders of Z % to meet the demand from
T nitbi

t, to ¢, a special order of (i, - t,) to meet the demand from
t, to te’ then an additional special order 05 at te‘
By employing the Exhibit 2 and Exhibit 3, we can have the decision process

tree as shown in Diagram 2.

6. Numerical Results

In this section, we demonstrate that all eight cases for the set that
t, $ 1, <ty <t (five for the case that no regular E0Q replenishment
point during the sale and three for the case that one regular E0Q
replenishment point during the sale) can be optimal policies with only t,
ty, or i, changes. Example 1 is designed to study the case that there is
no regular E0Q replenishment point during the sale while Example 2 is to
study the case that there is one regular E0Q replenishment point. The
following values of the parameters are employed for both Example 1 and

Example 2: P = 100, R = 800, € = 8000, F = 0.2. Ve note that the economic
order quantity 00 = 800 and the replenishment cycle is 1.

Example 1. Let ty and t, vary within the range of 5 < ty < 1,<6 and t,
vary from 1 to 5. The results is shown in Table 1.
By examining Table 1 carefully, we make the following interesting
observations for Example 1.
1) When i, and ¢, are sufficiently large (e.g., (255 t,) = (5.60, 5.75),
(5.60, 5.90) or (5.75, 5.90)), the policy of Case 3 is optimal

regardless the values of t,
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GO

Givenn=n
obtain 1,

* . (te'tb) <

o,V 02 -p°
R

*k . (te'tx) D e

o.-V 0 0*
R

@ : case i is optimal

Diagram 2. Decision process - one regular E0{ replenishment point
during the sale
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Table 1. No regular E0Q replenishment point during the sale
ty [ =1 l, =2 L=3 t,=4 HL=35
51515301 | 11955]1 [ 119401 | 11910§1 | 11820}3 8080
515154541 | 11955)1 | 1194011 | 11910} 1 | 118203 9580
5151560 2 | 1329712 | 13282 )2 | 1325212 | 13162)3 | 10720
515 1 575 }2 | 15763 )2 | 15748412 | 157182 | 15628 3 | 11500
515159012 | 17905§2 | 17890{2 | 17860{2 | 17770) 4 | 12173
530 | 545 )1 | 1182041 | 11760)1 | 11640} 1 | 11280} 3 9580
5301560 )1 | 118201 | 11760f1 | 11640{3 | 11360 |3 | 10720
530 1 575 }2 | 1316212 | 131022 | 1298212 | 12622 |3 | 11500
530 | 59012 [ 15628 |2 | 15568 )2 | 154482 | 1508813 | 11920
545 ) 56013 | 117443 | 1168033 | 115733 | 11360} 3 | 10720
545 1575 §3 | 119003 | 1187543 | 11833|3 | 117503 | 11500
545 | 590 §2 | 12937)2 | 12802)2 | 12535|2 [ 121323 | 11920
560 | 5753 { 11900}¢3 | 11875}3 | 11833 |3 | 117503 | 11500
5.60 | 590 13 | 119843 | 1198013 | 119733 | 11960 |3 | 11920
5751590 13 | 1198443 | 1198013 | 11973}3 | 119603 | 11920

Table 2. One regular E0Q replenishment point during the sale

Iy [ t,=1 t, =2 t,=3 =4 t, =35
5251 6.15}B | 10843 |B | 10801 {B | 10718 | B | 10468 ) C | 6483
540 | 6.15|B 8830|B | 8723|B | 8510|B | 7870}B [ 6270
540 | 630 | B | 10648 |B | 10541 |B | 10328 | B | 9688 { B 8088
5551615IB | 6683|B | 6603|B | 6468|B | 6198 |B 5388
555630 B 8826|B | 8745|B | 8610|B | 8340|B | 7530
555|645 |B | 10644 |B | 10563 | B | 10428 | B | 10158 | B | 9348
570 | 6,15 |B | 4397|B | 4362|B | 4302|B | 4182} B | 3822
570 1 630 |B | 6864|B | 6828|B | 6768| B | 6648 |{B | 6288
570 1645 1B | 9006i{B | 8970i1B | 8910|B | 8790} B | 8430
570 [ 6.60 {B | 10824 |B | 10788} B | 10728 {B | 10608 { B | 10248
5851615 A | 3200]A ] 3200]A ) 3200]A | 3200J A | 3200
5851630 |B | 4506|B | 4497|B | 4482 |B | 4452|B | 4361
5851645 {B | 6972|B | 6963|B | 6948]|B | 6918)B | 6827
585|660 |B | 9114]B | 9105{B | 9090|B | 9060}B 8970
585(675|B | 10932|B | 10923}{B | 10508 | B | 10878 { B | 10788
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2) Vhen t, =1, 2, 3, or 4, the optimal policy can be Case 1, Case 2, or
Case 3. 0On the other hand, When t, =95, the optimal policy is either
Case 3 or Case 4.

Also, it can be easily obtained that when d is sufficiently low (e.g., d =

1), the "Non-Response" policy is optimal.

Example 2. All the parameter values are the same as Example 1 with the
exception that the values of tyand ¢,. In this case, there is a regular
E0Q replenishment point occurs at 6 (i.e., ty < 6 < te). The
corresponding results are shown in Table 2.

By examining Table 2 carefully, we make the following interesting

observations for Example 2.

1) Case A is optimal only if both ¢y and t, are sufficiently close to
the regular E0Q replenishment point during the sale (e.g., (tb, te) =
(5.85, 6.15)).

2) When to =1, 2, 3, or 4, the optimal policy is either Case A or
Case B. 0On the other hand, when to = 5, the optimal policy can be

Case A, Case B, or Case C.

Furthermore, we note that the following properties can be easily verified
by way of simple calculus.

2
4 g < 0 for all cases.
5ta

Property 2. —gg—— > 0 for all cases.
e

Property 1. —gg—— < 0 and
a

Property 1 implies that the cost saving will increase when ta is
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decreased. That is, if the buyer is informed the sale earlier, then the
cost saving will be larger. In addition, the difference in the increase
of the optimal cost saving decreases as ¢ decreases.

Meanwhile, Property 2 implies that the duration of the sale
increases, the optimal cost saving for the inventory policies will

increase or remain the same.

7. Conclusions

In this paper, we constructed and analyzed an E0Q- type model for a
buyer who was just informed of an announced temporary price decrease. For
such a buyer, optimal inventory policies were derived by comparing cost
savings of various cases. By analyzing the optimal inventory policies,
several managerial insights were obtained. In particular, as the
announcement time of the sale t, is getting earlier (i.e., t, is getting
smaller), the optimal cost saving will increase or remain the same. 0On
the other hand, as the duration of the sale increases, the optimal cost
saving will increase or remain the same.

Several extensions can be made to enhance the basic models of this
paper. For examples, as discussed in section 1 Introduction, it is
assumed that the sale period is less than one regular E0Q cycle. By
relaxing this assumption and allowing the sale period is greater than one
regular E0Q model, interesting models that augment the models in this
paper can be developed. Another class of extensions can be made with
respect to the option of disposal. Implicitly, in this paper, it is

assumed that the buyer does not have the option to dispose his on-hand
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inventory when the temporary sale is announced. It would be interesting
to investigate the integration of inventory and disposal policies for
announced temporary price decrease. We believe that such extensions will

improve the applicability of inventory models in practice.
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Appendix. Proof of Lemma 1

Lemma 1. The optimal time point at which the special order is placed
for the set A: ta < tb < te < to is at te.

Proof:

Ve will denote the on-hand inventory level at t by a (i.e., ; =gq- E(tb

- ta)). In addition, we define y to be the time interval between t; and

the time point at which the special order occurs. Also, we will denote

the inventory level at (i, + y) after the special order (including the

inventory before the special order) by ﬂz. Figure 5 illustrates the

"Response" policy and "Non-Response"policy. In order to measure the cost

saving of the "Response" policy over the "Non-Response" policy accurately,

q
the total cost will be calculated from ¢, to (tb + Y+ —If—) (see e.g.,
Tersine, 1994). The total cost from the time point iy to the time point

(te + Y+ —If-) for the "Response" policy, CR, can be expressed as

follows.
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Figure 5. The general behavior for the case t, <ty <t <t
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£PF - p ¢ &
Cp=-tg—+ (4,- ¢+ B)(P- &) + (4, - ¢+ by) (L2

S g+ 2(p- d
(P - d)F + v, ¢ Ry;R(P il + € (A.1)

The corresponding total cost for the same duration for the "Non-Response"
policy, UHR’ is given by

~2 g - ; + By
Opp = Top— + —2—g (PR + Y ITHPF) (A.2)

From the equations (A.1) and (A.2), the cost saving of the "Response"

policy over the "Non-Response" policy is given by 00 = UNE - UK' The
objective now is to find the optimal y which will maximize Go. Namely,
From the maximization of the above problem, the following first

derivatives can be easily obtained.

¢ .
—HyL - (P£+W) - R(P-d) + §(P-&)F - 2(g-By) (P-d)F
- (4, q+y) (P-d)F (A.4)
By rearranging (A.4), we can obtain the following expression.
¢ - N
7 = R + ((ZE5)0-5. (g-2y))PF + (¢-By)dF > 0 (A.5)

From (A.5), we note that 96,/dy > 0. This implies that the cost saving
will increase when y is increased. That is, if the buyer places a special
order during the sale, his optimal strategy is to place the special order
as late as possible. In such a case the optimal time point to place a

special order is at time point te.
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CHAPTER III.

OPTINIZATION CRITERIA FOR INVENTORY- INVESTMENT IN SETUP OPERATIONS
POLICIES: PROFIT VS. RETURN ON INVESTMENT

A paper to be submitted to Decision Sciences

Cheng- Kang Chen and K. Jo Min
Department of Industrial and Manufacturing Systems Engineering

Iowa State University, Ames, IA 50011

ABSTRACT

Ve construct and analyze optimal policies for inventory and
investment in setup operations under profit maximization and under return
on investment maximization. Under a general functional form of investment
in setup operations, we derive the optimality conditions under profit
maximization and under return on investment maximization. By comparing
and contrasting the optimality conditions, several interesting economic
implications are obtained. Also, for two specific functional forms of
investment in setup operations (linear and hyperbolic), the closed- from
optimal solutions and the decision making rules are derived. From the

solution and rules, additional economic implications are obtained.
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INTRODUCTION

In this paper, we construct and analyze inventory and investment in
setup operations policies under profit maximization and return on
investment maximization for decision makers of inventory systems. Ve
assume that the option of investing in setup operations is available. We
also assume that the return on investment is the ratio of the profit to
the sum of the average inventory investment and the capital investment in
setup operations. Under these assumptions, we formulate the inventory and
investment in setup operations policies under both profit maximization and
return on investment maximization and derive the optimality conditions.
Also, several interesting economic implications at the optimality
conditions are obtained. The primary contributions of our paper are: 1) A
unique analytical formulation to examine the return on investment of the
option of investing in setup operations, 2) Several interesting economic
interpretations for the optimality conditions under profit maximization
and return on investment maximization, and 3) Closed-from optimal
solutions and the decision making rules when the setup cost function is
linear or hyperbolic.

The idea of employing profits as a performance measure of inventory
models has been explored as early as the 1950’s (see e.g., Whitin [16] or
Smith [14]). Ladany and Sternlieb [6] not only uses the profit levels as
the performance measure, but also provides insights on relations among
price, cost, and demand by making the demand dependent on the price and
the price dependent on the cost and a fixed mark-up. Schroeder and

Krishnan [13] proposes an inventory model under an alternative
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optimization criterion of return on investment inventory maximization.
Morse and Scheiner [8] investigates inventory models under three
alternative criteria which are cost minimization, return on investment and
residual income. Subsequently, Arcelus and Srinivasan [1] [2] compare and
contrast profit maximization vs. return on inventory investment
maximization with respect to constant elasticity demand functions. Also,
Rosenberg [12] compares and contrasts profit maximization vs. return on
inventory investment with respect to logarithmic concave demand functions.
In his analysis, under linear demand functioms, closed-form optimal
solutions are employed for the return on inventory investment model while
an examination of optimality conditions and an iterative procedure (e.g,
the Newton-Raphson method) are employed for the profit maximization model.
In contrast to the iterative procedure under linear demand function for
profit maximization model proposed by Rosemberg [12], Chen and Min [4]
derives the optimal closed-form solution for both profit maximization and
return on inventory investment maximization under linear demand functions.
Also, a comprehensively comparative analysis is presented in Chen and Min
[4] for both profit maximization and return on inventory investment
maximization models.

Recently, the superiority of an inventory management system called
Zero Inventory (often synonymous with Kanban and Just- in-Time; see e.g.,
Zangwill [17]) has attracted a great deal of attention not only from
industries but also from the academia. The essential philosophy of Zero
Inventory management system is that the inventory results from operatiomal

inefficiencies. Hence, the higher the level of inventory, the greater the
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operational inefficiencies. From this perspective, it is well known that
several Japanese and American producers strive to reduce the level of
inventory as much as possible. In order to reduce the level of inventory,
numerous experts in industry and academia find it essential to reduce the
setup cost of production. In Porteus [9], such efforts to reduce the
setup cost are mathematically incorporated by introducing an investment
cost function of reducing the setup cost to undiscounted E0Q models. For
the cases of logarithmic investment cost functions and power investment
cost functions, his models demonstrate decreased operational costs when
the setup cost is reduced. Porteus [10] extends Porteus [9] to the cases
of discounted E0Q models. Billington [3] formulates a model of which
setup cost is a function of capital expenses and investigates the
relations among holding, setup, and capital expenses. Hong, Xu, and Hayya
. [5] proposes a dynamic lot-sizing model of which setup reduction and
process quality are functions of capital expenditure. We note that, in
all these papers, the performance criterion has been the minimization of
operational costs (as compared to the maximizations of profit and return
on investment in our models). We also note that there have been few
analytical model that examines the return of the investment in improving
the setup operatioms.

In this paper, we construct and analyze inventory and investment in
setup operations policies by employing the profit maximization and the
return on investment maximization as the performance criteria. By
treating inventory and capital expenditure in reducing setup operations as

investments for the purpose of generating profits, the return on
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investment is defined to be the ratio of profit per unit time to the sum
of the average inventory investment per unit time and the investment in
reducing setup operations per unit time. The decision variables of our
models are the economic order quantity and the desired level of the
investment in reducing setup operations. We formulate the models and
derive and interpret the optimality conditions for general setup cost
function. For specific cases of linear and hyperbolic setup cost
functions, it is shown that the optimal investment decisions for the
linear setup cost case is more sensitive than the optimal investment
decisions for the hyperbolic setup cost case.

The rest of this paper is organized as follows. Ve first formulate
the inventory and investment in setup operations models and derive and
interpret their optimality conditioms. Next, for the specific cases of the
linear setup cost and the hyperbolic setup cost, the optimal closed-form
solutions are obtained and several interesting managerial insights are

presented. Finally, summary and concluding remarks are made.

DEFINITIONS AND ASSUMPTIONS
Throughout this paper, for the decision maker of the inventory
system, the following notations and definitions will be employed.
Q: the order quantity per order. Unit: units.
c: the variable cost per unit. i.e., the unit cost. Unit: $/unit.
i: the inventory holding cost expressed as a fraction of the unit
cost per unit time, excluding the opportunity cost of funds tied

up in inventory. Unit: 1/unit time.
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I: the inventory holding cost expressed as a fraction of the unit
cost per unit time, including the opportunity cost of funds tied
up in inventory. Unit: 1/unit time.

iyet the opportunity cost (or the cost of capital), I =i + i
Unit: 1/unit time.

oc’

K: the amount of capital investment in setup operations (to be
invested per unit time). K . <K <K . Unit: §/unit time.

S(K): the setup cost per order as a function of K. Unit: §.

p: the selling price per unit. Unit: §/unit.

d: the sales quantity per unit time. Unit: units/unit time.
The basic assumptions of our models are: 1) There are no learning effects
in setup or production; 2) Shortages or delivery lags is not allowed; 3)
The sales quantity per unit time as well as the selling price per unit are
deterministic and constant over time; 4) the setup cost function S(K) is

strictly decreasing with respect to K.

PROFIT MAXINIZATION MODEL

Given the above definitions and assumptions, we first develop a
profit maximization model with an option to invest in setup operations as
follows. The revenue per unit time is given by pd. And the corresponding
per unit time setup cost, total variable cost, inventory holding cost, and
the amount of investment in setup operations are given by —§£%lg—, cd,
—lgg—, and K, respectively. The total cost per unit time, TC, is:

TC = _§ﬁ%l§_ +cd + _I%Q_ +K (1)

And the corresponding profit per unit time, 7, is:
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x:pd--s—%)—d—-cd-%q—-x : (2)

The objective of the decision maker is to maximize 7 over § and K subject
to K. <K<K . An equivalent standard form (see e.3., Luenberger [T7])
for this problem is:

Problem 1: Minimize -«
0,K

s.t. Kmin -K<o0

K-K, €0
The corresponding Lagrangian functiom, Lx, is given by Lr = -7+ Al(Kmin -
K) + A2(K - Kmax)' The first order necessary conditions for Problem 1 are:

= - S(K)d/q% + Tc/2 = 0 (3)

L
A (Bpipn - K) = (5)
Ag(K - K ) = (6)
220 (7)
Ay 20 (8)
Kiin- K<O (9)
K- K, <0 (10
If an optimal solution (Q, K) is such that K = K then the first

min’
order necessary conditions are reduced to:

= (28(Ry;)d/(1e))°5, Ay = 8/(K

nin)d/@ + 120, and &y = 0 (11)

min
Ve note that the corresponding second order sufficient condition is
satisfied for any pair of (Q, K) which satisfies the first order necessary
conditions.

On the other hand, if an optimal solution (@, K) is such that K =
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Kmax’ then the first order necessary conditions are reduced to:

0= (25(K, )d/(1c))°%, A, = 0, and Ay = -§7 (K, )d/G - 120 (12)
We note that the corresponding second order sufficient condition is
satisfied for any pair of (Q, K) which satisfies the first order necessary
conditions.

Thus far, ve have examined the optimality conditions of the boundary
optimal solutions (in the sense that K = K ior K= Kmax)' Ve now proceed
to examine the optimality conditions of the interior optimal solutions (in
the sense that K . <K <K ). If an optimal solution (@, K) is such

that K € (K K

min’ max)’ then the first order necessary conditions are: Ay =

A2 = 0, and
gﬁ = S(K)4/Q% - I¢/2 = 0 (13)
o - S ®)d/Q- 1= 0 (14)

From (13) and (14), the Hessian matrix of r, H_, is given by
-28E)Y/C 5 R/

= (15)
T s ®a/e? -5 (K)d/g
From (15), the corresponding second order sufficient condition becomes

25(K)S” (K) > (S (K))2 (16)
Ve note that the first order necessary conditions and the second order
sufficient condition of the profit maximization problem are equivalent to
those of the cost minimization problem. Finally, we note that both
boundary and interior solutions are only local optimal solutions. Because
the functional form of S(K) is not specified in our model (i.e., broad
classes of functional forms are admissible), the issue of global

optimality is difficult to address. The extensive analyses of local
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boundary and interior optimal solutions in later sections, however, are
valuable because: 1) the global optimal solution is an element of the set
of local optimal solutions, and 2) the global optimal solution may change
from one local optimal solution to another local optimal solution even

with a minor perturbation in the values of parameters.

RETURN ON INVESTMENT MAXTMIZATION MODEL

Thus far, we have developed a profit maximization model and
characterized the corresponding optimal solutions. Let us now develop a
return on investment maximization model. In the literature of inventory
theory, there have been numerous papers on the return on inventory
investment. e.g., Schroeder and Krishnan [13], Morse and Scheiner [8]
Arcelus and Srinivasan [1] [2], or Rosenberg [12]. In these papers, the
inventory is viewed as a capital investment for profits. From this
perspective, the return on inventory investment is defined to be the ratio
of the profit per unit time to the inventory investment per unit time. An
additional distinction of the return on inventory investment is that the
inventory holding cost rate I is now replaced by i, which is exclusive of
opportunity costs. The reason for this change is that, because the
decision maker wants to maximize the return on investment, it is no longer
appropriate to pre-specify a return on capital in the inventory holding
cost. |

In the return on inventory investment models, the inventory is viewed
as a capital investment for profits. Let us now suppose that K is

invested in setup operations per unit time. Then, this capital expenditure
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must also be viewed as an investment for the same purpose. That is, both
inventory investment and investment in setup operations must be viewed in
the same way based on their profitability. Hence, in addition to the
inventory investment per unit time of cQ/2, if a per unit time capital
investment of K is made for the setup operations, the total capital
investment per unit time is equal to cQ/2 + K. The corresponding profit is
given by

P=npd- _§i§lé_ - cd - —igg— - K (17)

Therefore, the return on combined capital investment, R, is given by

R = (pd - -§1§lﬂ- ced- 2R/ R) (18)

The objective of the decision maker is to maximize R over ( and K subject
to K i, ¢ K & Ky, . An equivalent standard form (see e.g., Luenberger [7])
for this problem is :

Problem 2: Minimize -R
0.X

s.t. K. - K<0

The corresponding Lagrangian function, Lp, is given by Lp = -R + ,ul(Kmin -
K) + po(K - KMax)' The first order necessary conditions for Problem 2 are:
oL

- = - (A - ic/2)(ct/2 + K) - cB/2]/(c4/2 + K)2 =0 (19)
A =[5 U - D2+ 8 - B2 + D2 pomgz 0 (20
By (Byin - K) =0 (21)
po(K - K o) =0 (22)
By 20 (23)
By 2 0 (24)



84

Ko - K<O (25)
K- Kmax 0 (26)
If an optimal solution (Q, K) is such that K = Kmin’ then the first

IN

IA

order necessary conditions are reduced to:
[S(E,; )4/ - ic/2)(cQ/2 + K ) = cP/2, py= 0, and
By = [(S7(Kps)d/0 + 1)(cQ/2 + Kop) + P]/(cl/2 + K )% 2 0 (27)
Ve note that the corresponding second order sufficient condition is
satisfied for any pair of (0, K) which satisfies the first order necessary
conditions.
On the other hand, if an optimal solution (Q, K) is such that K =

Kmax’ then the first order necessary conditions are reduced to:

[S(R,,,)d/0% - ic/2](cQ/2 + K, ) = cB/2, 4, = 0, and
2

Hy = [(-8 (Rpgy)d/Q - 1)(cQ/2 + Kypp) - P1/(c/2 + By )% 2 0 (28)
We note that the corresponding second order sufficient condition is
satisfied for any pair of (Q, K) which satisfies the first order necessary
conditions.

Thus far, we have examined the optimality conditions of the boundary
optimal solutions (in the sense that K = Kipor K= Kmax)' Ve now proceed
to examine the optimality conditions of the interior optimal solutioms (in
the sense that K . <K <K ). If an optimal solution (@, K) is such

that K € (K K .)» then the first order necessary conditions are:

min’
By = o = 0, and

7= (SO - ie/2(e42 + 1) - /2l/(chz + B =0 (29)
B - (S (B)4/Q - 1)(cq/2 + K) - P1/(ch/2 + K)2 = 0 (30)

¥We can obtain the Hessian matrix of R evaluated at a solution (Q, K) of
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equations (29) and (30), Hp, as below.
4 [BEYe s @y

H, = (31)
AEEE s mae® s ®an
From (31), the corresponding second order sufficient condition becomes
25(K)S"* (K) > (5 (K))? (32)

Ve note that the functional forms of the second order sufficient
conditions of both Problem 1 and Problem 2 are identical (even though the

optimal values of K may be different).

OPTIMALITY ANALYSIS

In this section, we analyze the optimal solutions and derive
interesting managerial insights. First, we examine the interior optimal
solution cases, followed by the boundary optimal solution cases. Next, we
investigate the relative magnitudes of optimal solutions under profit
maximization and under return on investment maximization. Let (QT, Kr) and
(QR, KR) denote the optimal solutions under profit maximization and under
return on investment maximization, respectively.

Ve begin our analysis by examining the profit maximization model. By
rearranging the optimality condition (13), we have

S(R,)d/Q, = Icl,/2 (33)
The economic interpretation of (33) is that the setup cost per unit time
is equal to the inventory holding cost (including the opportunity cost)
per unit time at the optimality. Also by rearranging the optimality

condition (14), we have

-8/ (R )d/q, = 1 (34)



86

We can view -5/(K ) as the marginal setup cost saving. Also, we can view
g% = 1 as the marginal investment per unit time in the setup operations.
Hence, at the optimality, the marginal setup cost saving per unit time is
equal to the marginal investment in setup operations per unit time.

Let us now examine the return on investment maximization problem. By
rearranging the optimality condition (29), we have

S(Rg)d/B = iclg/2 + (clg/2)R (35)
The economic interpretation of (35) is that, at the optimality, the setup
cost per unit time is equal to the inventory holding cost (excluding the
opportunity cost) per unit time plus the portion of the profit per unit
time which is contributed by the inventory investment.

Also by rearranging the optimality condition (30), we have

-S’(KR)d/QR =1+R (36)
The economic interpretation of (36) is that, at the optimality, the
marginal setup cost saving per unit time is equal to the marginal
investment per unit time in the setup operations plus the return on
investment per unit time. That is, the marginal setup cost saving per unit
time is strictly larger than the marginal investment per unit time in the
setup operations at the optimality.

In addition, by rearranging terms in the optimality conditions (29)
and (30), we can obtain the following expression for Op:

Qg = (25(K) - $/(K)K)/(p - c) (37)
We note that this is a generalized expression of § = 2§/(p-c) in Schroeder
and Krishnan [13] where the option to invest in the setup operatioms is

not available.
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Ve now proceed to examine the boundary optimal solution cases. From
0.5 ,
(11), when (QT, KT) = ((ZS(Kmin)d/(Ic)) , K then -§ (Kmin)d/qr < 1.

i.e., the marginal setup cost saving per unit time is less than or equal

min)’

to the marginal investment per unit time in the setup operatioms. Also,
0.5 /

from (12), vhen (Q_, K ) = ((28(K,,,)d/(Ic))""", Kjax)» then -S7(K . )d/Q

> 1. i.e., the marginal setup cost saving per unit time is greater than or

equal to the marginal investment per unit time in the setup operations.

2 0.5
c+ (c“+4E, . cK . )
In addition, from (27), when (QR, KR) = ( 2Elcl,mln min ,
pd - cd - Kmin + iKmin
Kmin) where El,min = 25(K)d , then -S'(Kmin)d/qR < 1+

R. i.e., the marginal setup cost saving per unit time is less than or
equal to the marginal investment per unit time in the setup operations

plus the return on investment per unit time. Also, form (28), when (QR,

2 0.5
c + (c“+4E ck )
- 1,max™ "max _
KB_) - ( 2Elc 2 ’ Kmax), where El,ma.x =
pd - cd - K + iK
25(K?§x 2%, then -8/ (Kp,)d/Qg 2 1 + R. i.e., the marginal

setup cost saving per unit time is greater than or equal to the marginal
investment per unit time in the setup operations plus the return on

investment per unit time.

LINEAR SETUP COST CASE

In this section, we consider the case that the setup cost has a
linear relation to the amount of investment for setup operatioms. i.e.,
S(K) = a - fK (see e.g., Billington [3]), where a and § are positive

constants and a is the upper bound of the setup cost. For the profit
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maximization decision maker, the objective function and the constraints
can be described as follows.

Minimize -7 = -pd + a-fK)d +cd + —E%E— +K
3, K
s.t. -K

+
o

K-K <0
For the return on investment maximization decision maker, the objective

function and the constraints can be described as follows.
Winimize -R = —Pd + ((e-AK)d/Q) + cd + (icQ/2) + K
U K K + (cf/2)
s.t. -K + Kmin 0

i

I

K- K., €0

The corresponding boundary and interior solutions which are derived from
the first order necessary conditions under both profit maximization and
return on investment maximization are summarized in Table 1. Moreover, in
Table 1, we also present whether the second order sufficient conditions
are satisfied or not at the solutions, which are obtained from the first
or&er necessary conditions.

From Table 1, we note that, for the linear setup cost case, the
interior points are never optimal. The optimal solutions for both profit
maximization and return on investment maximization always occurs at the
boundary points. Hence, the optimal investment decision for setup
operations under linear setup cost is either Kmin or Kmax regardless of
the choice of optimization criterion. By comparing the objective function
values evaluated at Kmin and Kmax under both profit maximization and
return on investment maximization, the following decision-making rules can

be developed.



Boundary Solutions Interior Solutions
K Q S.0.8.C. K Q S.0O.N.C.
2

Profit : [ 2(a-pK)d , 20-dIcB t

e e, Ko or Kow b bl sl . d no
Maximization s Ic satisfied 2B B satisfied

ROI | o ¢ ot +dA K _ 20-Q(p-0) | -A#Al+2adA; | ot
Maximization mia B T 2Ac satisfied B As satisfied

Table 1. The solutions for linear setup cost case

68
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K - K . a - ﬂK . a - ﬁK
Rule 1. If Ic < i m?x _ qmln and — min max_
, r;mln T,nax QR nin QR,max
then KT = K% = Kmin‘ ﬂx ﬂK
- K . a -~ . a -
Rule 2. If Ic > Q IH?.X - len and 5 min < max ,
. T,min T,Max QR,min QR,max
then Kﬂ' = KR = Kmax_ ﬂK
K - K . a - . a- fK
Rule 3. If Ic < p——>——""— and S max ,
, T,M1n x;max QR,min qR,max
then Kx = Kmin and KR = Kmax
Kpax = Eni a- fK . a - fK
Rule 4. If Ic > 0 méx _ qmln and 5 min ’ max ,
e ", min %, nax

% *
then K’r = Kmax and KR =K

Ve note that, in the above statements, {

7,min Ic » %r,max
- 2d(a'ﬂxmax) 0.5 _ c+ (c +4A1 m1n Kmn)o'5 d _
- Ic ) R,min ~ 2A1c ) an QR,max -
0.5 .
c+ (c +4A1 max K oox) chere 4, . = pd - cd- K. + ik .. and
24,c 1,min 2(a - pK . )d
pd- cd- K+ ik o

Momax * T AE__ja

From these decision-making rules, we note that the combination of the
optimal investment decisions for setup operations under profit
maximization and return on investment maximization are among the following

*
; K

* *
four cas:s: 1) K, =*KR =K 0 2) K KR Kax 3) K Ko ini Bg = Kooy
and 4) KT = Kmax; KR = Kmin' It can be easily observed that, under

different optimization criteria for the linear setup cost case, the
optimal investment decisions in the setup operations may be identical even

*
though the optimal order quantities § s are different. For example, Rule
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1 and Rule 2 result in K =Ky =K . and K, = Ky =K while Q_ # O
(i.e., Case 1 and Case 2). On the other hand, the optimal investment
decisions may be in the opposite directions in the sense that K: = Kmin
and K; =K. (or K: = K, and K; =K ;,) (i.e., Case 3 and Case 4).

In order to illustrate the features of the linear setup cost case
under both profit maximization and return on investment maximization, we
provide the following numerical example.

Example 1. Suppose that a = 500, =1, d =25, I =0.2, ¢ = 100, p = 150,
K ip =50, and K, = 480.

Ve plot the negative profit (-r) surface and the negative return on
investment (-R) surface in Figure 1 and Figure 2, which show that the
interior solutions derived from solving the first order necessary
conditions (i.e., (K, Q,) = (25, 250) and (B, OQg) = (16.67, 166.67)) are
saddle points. By employing the decision-making rules developed earlier
in this section and Table 1, the optimal solutions can be easily found at
boundary points (K:, Q:) = (480, 7.07) for profit maximization and (K;,
Q;) = (480, 3.11) for return on investment maximization. In this example,
the investment decisions are idemtical for both profit maximization and
return on investment maximization (i.e., case 2. K: = K; = K .) even
though the optimal order quantities Q*s are different (i.e., Q; = 7.07 and
0g = 3-11).

Ve nov demonstrate that all of those four cases can exist with only
one or two changes in values of parameters. To achieve our objective, we
select the per unit cost ¢ and the sales quantity per unit time d as the

parameters whose values change. Specifically, we let the per umit cost ¢
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increases from 30 to 100 by step size 10 and the sales quantity per unit

time d decreases from 50 to 15 by step size 5. The results are presented

in Table 2.

By examining Table 2 carefully, we make the following interesting
observations.

1) Vhen (d, c) = (50, 30), the optimal investment decisions under profit
maximization and return on investment maximization are identical at
K = K; = Kp5p = 50 (i.e., this corresponds to case 1) even though

*
the optimal order quantity under profit maximization Qr (= 86.60) is
approximately 9.67 times larger than the optimal order quantity under
return on investment maximization Q; (= 8.96).

2) Vhen (d, c) = (45, 40) or (40, 50) or (35, 60), the optimal
investment decision under profit maximization is K: = Kmax = 480
vhile the optimal investment decision under return on investment
maximization is K; = K ;p = 50 (i.e., this corresponds to case 4).

3) Vhen (d, c) = (30, 70) or (25, 80) or (20, 90), the optimal
investment decisions under profit maximization and return on
investment maximization are identical at K: = K; = Kmax = 480 (i.e.,
this corresponds to case 2) even though the optimal order quantities
0, and Qp are different.

4) Vhen (d, c) = (15, 100), the optimal investment decision under profit
maximization is K: = Kmin = 50 while the optimal investment decision
under return on investment maximization is K; = Ko = 480 (i.e.,

this corresponds to case 3).



dle Ki | & Ty R: Ke | Q Rk T Remark

50| 30] 50 | 86.60 | 5430.38| 4.1218 | 50 | 896 | 18.5759 | 3411.96 K3 =K = Knmin
45| 40| 480 | 15.00 | 4350.00| 5.6154 | 50 | 936 | 11.4579] 2699.10| Ki=Kmax; Kx=Kmin
40| 50| 480 | 12.65 | 3393.51 | 4.3016 | 50 { 1001 | 7.0833 | 2101.75| Ki=Kmax; Kg=Kmin
35| 60| 480 | 10.80 | 2540.39| 3.2000 | 50 | 1092 | 4.3033 | 1592.17 | Ki=Kmax; Kg=Kpmin
30| 70| 480 | 9.26 | 1790.39| 2.2669 | 480 | 2.37 | 2.9462 | 1650.25 Kr = K = Knax
25| 80| 480 | 7.91 | 1143.51| 14756 | 480 | 2.55 | 1.8277 | 105352 Kj = Kp = Kpnax
20| 90| 480 | 6.67 | 60000 | 0.8076 | 480 | 293 | 09321 | 557.11 Kn = Kp = Kmax
151100] 50 | 2598 | 18039 | 0.2300 | 480 | 4.10 | 0.2574 | 155.83 K7=Kmin; KR=Kmax

Table 2. Numerical results for linear setup cost case

g6
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5) Given the other parameters fixed, as the per unit cost c increases and
the sales quantity per unit time d decreases simultaneously, both the
optimal profit level under profit maximization and the optimal return
on investment level under return on investment maximization decrease.

6) Under the criterion of profit maximization, the higher level of
profit does not necessarily represent the higher level of return on
investment. For example, x; = 5430.38 and R: = 4.1218 at (d, ¢) =
(50, 30), while . = 4350.00 and R_ = 5.6154 at (d, c) = (45, 40).

7) Under the criterion of return on investment maximization, the higher
level of return on investment does not necessarily represent the
higher level of profit. For example, By = 4.3033 and 7y = 1502.17 at
(d, c) = (35, 60), while R; = 2.9462 and x; = 1650.25 at (d, c) =
(30, 70).

HYPERBOLIC SETUP COST CASE
In this section, we consider the case that the setup cost has a
hyperbolic relation to the amount of investment for setup operationms.
Specifically, we assume that S(K) = -ﬁ— vhere 7 is a positive constant.
For the profit maximization decision maker, the objective function and the
constraints can be described as follows.
N d Ic
Mlﬁtmize T =-pd + —ﬁq— +cd + __Eg_ +K
s.t. -K + Kmin <0
K - Kmax <0
For the return on investment maximization decision maker, the objective

function and the constraints can be described as follows.
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Winimize -R = —Pd * (7d/(KQ)) + cd + (icQ/2) + K
0, K K + (c0/2)
S.t. -K+Kminso and K-Kmaxgo

The corresponding boundary and interior solutions which are derived from
the first order necessary conditions under both profit maximization and
return on investment maximization are summarized in Table 3. Moreover, in
Table 3, we also present whether the second order sufficient conditionms
are satisfied or not at the solutions, which are obtained from the first
order necessary conditions.

From Table 3, we note that, for the hyperbolic setup cost case, both
the boundary solutions and the interior solutions can be optimal (cf., the
linear setup cost case) no matter which optimization criterion is
employed. Hence, the optimal investment decision for setup cost reduction
K

max’ °F Kint‘
rest of this paper, we will denote Kint as the interior solution of the

under hyperbolic setup cost can be Kmin’

Throughout the
investment decision in the setup operations. Also, by examining the
Hessian matrices of the objective functions (i.e, -r and -R), it can be
easily shown that the objective functions are strictly convex for the
hyperbolic setup cost case. By employing both the comvexity property of
the objective functions and Table 3 and as by comparing the objective
function values evaluated at K, and Kmax’ the decision- making rules can

be developed. Exhibit 1 depicts the decision-making rules for profit

.. . o . 2d7 0.5
maximization decision maker. We note that in Exhibit 1, Qr,min‘(K;IiIE)

. 2d 0.5
and qx,max‘( KmaxIC )

From Table 3 or Exhibit 1, the optimal interior solution of the investment



Boundary Solutions

Interior Solutions

K Q S.0.8.C. K Q S.O.N.C.
Profit [2vd . 3 Tey ’/ 4yd .
Maximization Kais OF Ko Kic satisfied 5 _12:3—2 satisfied
ROI cHf +4B,cK _ -B.# B}-4B, 3y :
Maximization Kai or Ko 2B,cK satisfied 2 oK satisfied

Table 3. The solution for hyperbolic setup cost case

86
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Exhibit 1. The decision-making rules for hyperbolic setup cost case
under profit maximization

Icyd (1/3
If Kpin < (;"El__) 3¢ K jax .
c
else

K - K . *
{ if Ic< fax 10 then K=K . and
Qr,min Qr,max T fin

* 27d 1/3
%, = () /
. else K: =K, and Q: = (—Kgfi%a—)1/3 }

decision for setup operations K: increases as the inventory holding cost
I, the per unit variable cost c, the sales quantity per unit time d, or
the positive parameter of the setup cost function 7 increases. Moreover,
the optimal interior solution of the order quantity Q: increase as the
sales quantity per unit time d or the positive parameter of the setup cost
function 7 increases. On the other hand, the optimal interior solution of
the order quantity Q: decreases as the inventory holding cost I or the per
unit variable cost ¢ increases.

For the return on investment maximization decision maker, the

decision-making rules can be described as Exhibit 2. We note that, in

2 2 ,0.5
c+(c”+4B, . cK . )
.1 1,min" min
Exhibit 2, Q, . = 2 and ( =
’ "R,min 2B1,mincxmin R,max
2 2 ,0.5
c+(c +4B1,maxcxmax)
2B ck

1,min""min
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Exhibit 2. The decision-making rules for hyperbolic setup cost case
under return on investment maximization

pd—cd—Kmi +1Kmin pd—cd—Kmax+1Kmax

Let B1,min = 97d ) Bl,max 27d ’

97c(1-1i -3¢

By + (B2 - 4B,)"""
If Kmin < 2 < Kmax

¢ By + (B - 4By)0" . 3

then KR = 5 and §, =
(p-c)ky

Else

* *
Q2 0 » then Kp = K, and Qp = QR,min
R,min R,max

From Exhibit 1 and Exhibit 2, we note that the combination of the
optimal investment decisions in the setup operations under profit

maximization and return on investment maximization are among the following

. * * * * *
nine cases: 1) K = KE = Kmln’ 2) KI = Kmln; KR = max’ 3) K = Kmln; KR =
1nt’ 4) K = Kint’ K = m1n; 5) K, = KR = Eing» 6) K = fint’*xﬂ = Kpax
7) Kr Kpax’ Xp = Epin» 8) Kp = Kpges K R = Kjp¢» and 9) K = Kp = Kmax

In order to illustrate the features of the hyperbolic setup cost case
under both profit maximization and return on investment maximization, we

provide the following numerical example.
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Example 2. Suppose 7 = 15000, d = 25, I = 0.2, i = 0.1, ¢ = 100, p = 150.

We plot the negative profit (-r) surface and the negative return on
investment (-R) surface in Figure 3 and Figure 4, which show that the
interior solutions derived from solving the first order necessary
conditions (i.e., (K., Q,) = (155.36, 15.54) and (K, Qp) = (169.03,
5.32)) are global minimum solutions (this is due to the convexity of the
objective functions).

Ve now demonstrate that all of those nine cases can exist by only
changing the per unit cost ¢ and the lower and upper limits of the amount

of investment for setup operations (i.e., K

nip 30d K. ). The results are

presented in Table 4.

By examining Table 4 carefully, we make the following interesting
observations.
1) The optimal investment decisions in the setup operations may be

identical no matter which optimization criterion is employed. For

*

R=
* *

= (100, 170, 190), K =Ky =K. .

*
example, when (c, K i’ Kmax) = (60, 90, 110), K =K
K

nax)
2) The optimal investment decisions in the setup operations may be in

Kmax’ or

when (c, Kpin®

.. * * *
opposite direction in the sense that Kx = Kpins KR = Kmax or Kw =

*
LS KR = Kmin‘ For example, when (c, Kmin’ Kmax) = (40, 90, 110),
* * *
K = Kmax*and Kp = K, or when (c, K ins Kmax) = (120, 168, 175), K
= Epins ®p = Kpax-

3) The optimal investment decisions in the setup operations may occur at
interior points for both profit maximization and return on investment

maximization. For example, when (c, K

*
min® Kmax) = (80, 130, 150), K7r



102




103




c | k. | x| K Q o Ra Kz Q& Rr TR Remark

40 | 90 | 110 | 110 | 29.19 | 2406.45| 3.5527 | 90 | 4.64 | 9.5883 | 1743.45 | Ki=Kmax; Kg=Knmin
50 {90 | 120 | 120 | 25.00 | 2130.00 | 2.9430 [123.31| 449 | 7.3196 | 1543.54 | Ki=Kmax; Kg=Kins
60 |90 | 110 | 110 | 23.84 | 185396 23334 | 110 | 447 | 55876 | 1350.52| Ki=Kg=Kma
70 | 130 | 150 |137.95] 1971 | 1586.16 | 1.9995 | 130 | 437 | 42220 | 1179.32 | K}=Kim: Kx=Kumin
80 | 130 | 150 |144.23] 18.02 | 1317.33| 1.6062 [141.74] 4.54 | 3.1154 | 989.19 | Kz=Kg =Kin

90 | 130 | 152 |150.00] 16.67 | 105000 1.2498 | 152 | 4.87 | 2.2080 | 797.58 | Kn=Kin; Kp=Kmax
100 | 170 | 190 | 170 | 14.85 | 78392 09394 | 170 | 531 | 1.4651 | 611.48 | Kz=Kg=Kmin

110 | 170 | 190 | 170 | 14.16 | 518.87 | 0.6285 [160.83| 629 | 0.8636 | 398.70 | Ki=Kpmin: Kg=Kint
120 | 168 | 175 | 168 | 13.64 | 25471 | 03412 | 175 | 848 | 0.3970 | 220.54 | Ki=Kmin; Kg=Kumax

Table 4. Numerical results for hyperbolic setup cost case

¥01
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= 144.23 and K; = 141.74. In this case, both K: and K; are interior
points.

4) The optimal investment decision under profit maximization may occur
at boundary points (interior points) while the optimal investment

decision under return on investment maximization may occur at

interior points (boundary points). For example, when (c, Koin® Kpax)
* *

= (50, 90, 120), K = Kmax and Ky = K, 45 or when (c, | S Kmax) =
* *

(110, 170, 190), Kr = Kmin and KR = Kint; or when (c, Kmin’ kmax) =
* *

(70, 130, 150), K=K, . and Ky = Kpjp3 Or vhen (c) Kpipo Kmax) =

(%0, 130, 152), K =K,  and Ky = E__.

By comparing the optimal investment decisions for linear setup cost
case and the optimal investment decisions for hyperbolic setup cost case,
it can be easily observed that the optimal investment decisions for linear
setup cost case is more sensitive than the optimal investment decisions
for hyperbolic setup cost case. This is because that the optimal

investment decisions for linear setup cost case occurs only at boundary

points (i.e., K . or K . )

hyperbolic setup cost case may occur at both boundary points and interior

Kmi

vhile the optimal investment decisions for

points (i.e., K

max’ n’ OF K;

1nt)‘

CONCLUDING REMARKS

In this paper, we constructed and analyzed inventory and investment
in setup cost operations policies under profit maximization and return on
investment maximization for the decision maker of the inventory system.

First, we showed how inventory and investment in setup operations policies
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under profit maximization and return on investment maximization can be
formulated for general functional form of the investment in setup
operations. From these formulations, the optimality conditions and the
corresponding economic interpretations are obtained. Next, for the
specific cases of the linear setup cost and the hyperbolic setup cost, the
optimal closed-form solutions are obtained and several interesting
managerial insights are presented.

The models developed in this paper relates general practices since
numerous industries and firms apply E0Q based decision making for their
inventory systems. There are several possible extensions that will further
improve the relevance of our models to general practices. They include
incorporation of more sophisticated features such as shortages, delivery
lags, and stochastic demand rates, etc. From the perspective of investing
in setup operations, it would be of interest to study the allocation of
the investment in setup operations. For example, how much should be
invested in purchasing or leasing new equipments and how much should be
invested in labor’s training and wages, etc. From the perspective of
optimization criterion, it would be of interest to study the effects of
investing in setup operations on process quality improvement, effective
capacity and flexibility improvement (see e.g., Porteus [11], and Spence
and Porteus [15]) im conjunction with the optimization criterion of return

on investment.
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CHAPTER IV.

A NULTI-PRODUCT E0Q MODEL VITH PRICING CONSIDERATION
-T. C. E. CHENG’S MODEL REVISITED

A paper published in

Computers and Industrial Engineering: An International Journal

Cheng- Kang Chen and K. Jo Min

ABSTRACT
We present two major revisioms/corrections regarding a recent paper by T.
C. E. Cheng [1]. First, we note that a critical assumption of the equal
replenishment cycle length for all products is stated, but not
incorporated into the mathematical formulation in Cheng [1]. In this
paper, we re-formulate the problem with the equal replenishment cycle
length incorporated and derive the corresponding Kuhn- Tucker optimality
conditions. Next, under the linear demand assumption, we show that the
closed-form solutions provided by Cheng [1] may result in non- optimal
solutions. The reason is that Cheng [1] failed to derive conditions under
which the closed-form solutions may be optimal. In this paper, by
employing the trigonometric methods (see e.g., Porteus [7]), we derive the
optimal closed- form solution that is unique and obtain the conditions

under which the optimal closed-form solution is valid.
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INTRODUCTION

In a recent paper, Cheng [1] proposes a multi-product E0Q model that
integrates the pricing and order sizing decisions to maximize profit with
storage space and inventory investment constraints. This E0Q problem is
formulated as a constrained non-linear optimization problem and the
corresponding Kuhn- Tucker conditions are derived for the optimal
solutions.

Even though Cheng [1] makes a valuable contribution in integrating
inventory and pricing policies, we believe that the E0§ model needs two
major revisions/ corrections - one in the model formulation phase and the
other in the closed-form solution derivation phase under the linear demand
assumption.

In Cheng’s paper [1], a critical and simplifying assumption is made
that all products have equal replenishment cycle length. Under this
assumption, he formulates the multi-product E0Q problem as a nonlinear
programming, which maximizes profit over the demand rate and the order
size for each product by considering the storage space and inventory
investment constraints. In the formulation, however, the equal
replenishment cycle length assumption is not mathematically incorporated.
Therefore, the optimal solutions from the model may result in unequal
replenishment cycle lengths for some products, violating the stated
assumption. In this paper, we will explicitly incorporate the equal
replenishment cycle length assumption in the formulation. Consequently, we
obtain the Kuhn-Tucker optimality conditions that are substantially

different from those shown in Cheng [1].
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Also, under the linear demand assumption, Cheng [1] provides optimal
closed-form solutions. Ve will show that the closed- form solutions,
however, may result in non-optimal solutions via numerical examples. The
reason is that Cheng [1] failed to derive conditions under which the
closed- form solutions may be optimal. In this paper, by employing the
trigonometric methods (see e.g., Chapter 2 of Griffiths [6]), we derive
the optimal closed-form solution that is unique and obtain the conditions

under which the optimal closed- form solution is valid.

BASIC MODEL
In order to formulate the basic model, as in Cheng’s paper [1], the
following definitions and assumptions are employed.
n = total number of products produced by the firm;
Qi = demand rate for product i;

Q=(0, 9y, Q3,---, 4 ), the demand rate vector;

q; = order size of product i;

Q= (g, 99y d3,°°*, q), the order size vector;

S; = order cost per batch of product i;

r, = unit cost of production of product i;

fractional inventory carrying cost rate;

1}

J
T = length of a replenishment cycle;
fi = storage space requirement per unit of product i;
Pi = unit selling price of product ij;

1(Q, g, T) = total profit derived from the sale of the products;
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F = total fixed cost of production and administration;
A = total storage space available;
I = maximum inventory investment allowable.

The following basic assumptions about the model are made:

(A1) A1l products have the equal replenishment cycle length T.
ivev, T=qk, i=1, «-+, 1.
’ q;s ’ ]

(A2) Replenishments of the products are instantaneous.
(A3) No backorder is permitted.
(A4) The demand rates are uniform and continuous.
(A5) The demand functions of the products are given as follows:
P, =h;(Q;), 1<¢i<n
vhere h,(-) is a function of Q; which, in general, is
monotonically decreasing.
In addition, in this paper as well as implicitly in Cheng [1], it is
assumed that all products are replenished at the same time.

Under these definitions and assumptions, the revenue per cycle is

n
X P.q;, the total production cost per cycle plus the total fixed cost of
i=1

.2
n jr.q;
. .. . it
production and administration per cycle are i2=11(si +TiQp “_QQ;"") + FT.
Therefore, the profit per cycle, which is the revenue less the cost, is

2
n n r.qs
: i . .
given by i}=31Piqi - iEl(si +Tq; + -—Qu;——) - FT. The corresponding profit

per unit time can be obtained by dividing the profit per cycle by the

q.
cycle length —u%-. The objective of our model is to maximize the profit
i
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per unit time subject to the storage and inventory investment constraints

as well as the equal replenishment cycle length restriction. Namely,

- n 5;0; Jr39;
Yaximize 1(Q, q, T) = .El{hi(qi)qi - -0, - ——=}-F (1)
1=

9
subject to :
n
1. i§1fiqi <A (2)
2
v J%i%
. < 3
2 i§1 q; - . ®)
q.
3. T=-—0— fori=1,2,3,4, coree. n (4)
—Qi— y €9 9y Ty ’

where 4> Qi are non-negative for 1 < i < n.

In particular, the third constraint explicitly expresses the critical
assumption that all products have the equal replenishment cycle. In such a
case, the decision variables are not only the demand rate and the order
size for each product but also the equal replenishment cycle length. We
note that, in Cheng’s paper [1], the third constraint is not incorporated
in the formulation even though the assumption is stated in the problen.
This omission, we believe, is significant in that the optimization of the
formulation in Cheng [1] may result in infeasible solutioms. To emphasize
the differences between Cheng [1] formulation and our revised formulationm,
a numerical example is provided at the end of this section.

Also, in order to meet the standard form of nonlinear programming
(see, e.g., Chiang [3] or Intriligator [4]), we will employ an equivalent
set of constraints for the third constraint as follows.

93

93
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Given the revised formulation of the problem (1)-(3) and (5), we have

the following Lagrangian function:

t s;4; jr.q. n
= A T B A P L
2
n r.q. n q n a.
dofI- % ——ﬁﬁ_l— + 3T+ =2} s Do {-——+T 6)

vhere Al, A2, By and w; for i =1, ..., n, are the Lagrangian

multipliers.

Next, invoking the Kuhn- Tucker optimality conditions for the Lagramgian

function (6), we obtain the necessary conditions for the optimal solution

as follows.

Condition 1

Qi_g%;— -0,1<1i¢<n.

or
dh.(Q.) S:
1v*1 1
Qi { hi(qi) + Qi 5qi - q; -
9
ir.qs Qs q
A . ¢
20; U i
Condition 2
‘351‘ <0,1<1i¢<n.
or
2
oh.(0.) s. jr.q; q. q.
By + Q—gg— - g ity kgt U5 <0 (8)
1 1 20; LFE
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Condition 3

qi—g%;— =0,1<1i¢<n.
or
s.0. jT. jT.q.
17%1 1 14 1 14 _
i aaa  Fan P Y Al (9)
i

Condition 4

WSO,:‘.SISH.
or
s;8; iry

1 1
2Tz M A e 4O (10)
1

Condition 5
oL _
I‘17T1_ - 0

or
n

Condition 6

oL

- 2 0
1

or
n
A -iglfiqi >0 (12)

Condition 7

oL _
A2W2_—O

or

.9
AT~ B 2idiy g (13)
¥ gy Wy T
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Condition 8
JL
Ty 0
or

n jrya}
TI- i{:'l——gqi—- 20 (14)
Condition 9
aL
T -'aT-—- = 0
or

T3 Cay o)} = 0 (15)

Condition 10

or

n
Y (-p; +w;) <0 16
i=t  * 1 (16)
Condition 11

JL .
”i—vﬁ;_ =0,1¢<1i<n.

or
BT e g o (17)

Condition 12

—g‘];—zo,lslsn.
1

or

93
-T + _Q;— 20 (18)
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Condition 13

gL .
ali—azi——opl_ b

~
[y
N
=]

or

il
(]

05 ‘Si— + T} (19)

Condition 14
JL

-—Qi—+T20 (20)

Condition 15
;5 455 T, Al, Agy Byy w5 20,1 <1< 0. (21)

We note that the above conditions (7) — (21) are only the necessary
conditions for optimality. We will refer the readers to optimization
textbooks such as Luenberger [5] regarding the second order sufficient
conditions (SOSC) for the optimality. We also note that there are several
widely-used commercial software packages (such as GIND) which efficiently
computes the optimal solutions for non-linear optimization problem.
Finally, we note that there is an implicit assumption that the profit
level at the optimality for each product i (excluding the total fixed cost
F, which is independent of i) is non-negative. The reason is that few
firms will operate with negative profit for any product in the long run.

So far, we have incorporated the condition of equal replenishment
cycle length into the mathematical formulation and obtained the
corresponding Kuhn- Tucker conditions. In order to illustrate the

differences between Cheng’s formulation and our revised formulation, we
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construct the following numerical example:
j=0.4 A = 500 I=750 F
P1 = hl(ql) =0y - ﬁlln(ql); P, = h2(Q2)
2y = 100 ag =120 f, =20 B, =15

i
o

2y - ﬁzln(Q2)

wn
[uy

1]
—
(o]
[7)]

[ V]

1]
(V]
(=]
H

p—

1]
—
[\
H

(L]

il
—
(e o]
Hh

[y
il
o
©
(a2
[\
1
—
(44

Table 1. Comparison Between Cheng’s Formulationand Revised Formulation

. Cheng’s Formulation Revised Formulation
q, 50.68 51.18
demand rate ¥
% 965.91 963.36
I
9 61.78 17.16
order size —
2 284.43 323.04
—%
T1 1.2192 0.3353
cycle length|—sx—
T2 0.2495 0.3353
S'c‘gfl‘;%ﬁaggice non-binding 482.25 < 500| binding 500 = 500
inventory invest- s s
ment constraint non-binding 48.23 < 50 | non-binding 40.38 < 50
le length . s
czgn:trzgiz violated, T1 $ T2 satisfied, T1 = T2
feasibility infeasible feasible and optimal

By employing an optimization software package GINO and an IBM PC 386, we
easily obtain the solutions for both formulations. The corresponding
results are summarized in Table 1.

From Table 1, we observe the following:

1) The optimal values of decision variables can be quite different. This
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implies that a manager might end up with an infeasible decision if he
had followed Cheng [1}.

2) The condition of equal replenishment cycle length may have an impact
on the storage space constraint or the inventory investment
constraint. For example, the storage space constraint is non- binding
in Cheng’s Formulation while it is binding in Revised Formulation.

As shown in 1) and 2), as well as in Table 1, not incorporating the

condition of equal replenishment cycle length may substantially distort

the optimal solutions, and the managerial consequence (due to

infeasibility, etc.) may be substantial.

LINEAR DEMAND FUNCTION

In Cheng [1], under the linear demand assumption, closed-form
solutions are derived through relations (21) - (28) relying on Standard
Mathematical Table [2]. First of all, we believe that there is a
typographical error in equation (27). Instead of B, =- ( -(bi/2) +
(®2/4) + (a3/27)%%)/3 a5 in Cheng [1], B, = (- (by/2) - ((b2/4) +
(a§/27))0.5)1/3_

Even if equation (27) of Cheng [1] were correct, a serious problem
arises in equations (28) and subsequent sentences in page 534 of Cheng
[1]. Equations (28) provide three candidates for the closed-form solution.
On line 5 and 6 in page 534, the following is stated verbatim: "It follows
that Qz = y? and, from equation (21), q: = yi(2si/jri)1/2. Finally, we
have to determine whether the solutions Q* and q* satisfy the constraints.

If they do, then they are optimal.”
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The problem with the above statement is that even if such solutions
Q* and q* vere found, they may not be optimal solutions! The reason is
that Cheng [1] failed to derive conditions under which equations (28) lead
to the closed-form optimal solutions. A related problem is that Cheng [1]
also failed to present a mechanism to determine the true optimal candidate
out of the three candidates of equations (28). We demonstrate these
problems by way of the following numerical example as well as the example
at the end of this section.

Let us suppose that s, = 200, j = 0.5, r, = 40, m_= 10, and P) = 100
for product k. Then, equations (24)-(28) in Cheng [1] lead to Q, = 4.10,
0.95-0.565i, or 0.95+0.565i. Obviously, the imaginary numbers are
unrealistic to be the optimal solutions. In the case of Qk = 4.10, the
corresponding Qe is equal to -9.0598, which is also unrealistic.

As we can see from this numerical example, clarification and
improvement are necessary. In order to do so, we employ the trigonometric
methods (see e.g., Chapter 2 of Griffiths [6] or appendix of Porteus [7]),
and derive the optimal closed-form solution that is unique and obtain the
conditions under which the optimal closed-form solution is valid. Specific
derivations are as follows.

As in Cheng [1], we assume that there is a linear relationship
between the unit selling price and demand rate for the products.
Specifically, we denote the price-demand function as follows.

P, =h(g) =P} - mQ, 1¢i¢n (22)
where Pg, m; > 0 are arbitrary constants and Pg > m.0,.

Following the solving procedure in Cheng’s paper [1], we assume for
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the time being that comstraint sets (2) and (3) are inactive while
constraint set (4) is satisfied. Hence, we can obtain the following

necessary conditions for the optimal solutionms.

) S 5 _
—-a'qi— = Pl - 2miQi - ri - —q—l—' =0 (23)
o S In
- = - =0 (24)
. 2 2
0q; a

2s.0.
By substituting and rearranging the relation g; = ( J;.l )0’5 from (24)
i

into (23), we obtain the optimality condition for Qi as follows:

0 .
r. - P. Jr:s;
Q1'5 + ( 1 - i )Qg.5 + 81 i )0.5 -0 (25)

i
By employing the trigonometric methods (see e.g., Chapter 2 of Griffiths

[6] or appendix of Porteus [7]), we obtain the optimal demand rate, Q;, as

follows.
P 201,
4 = —gg—— cos"(3) (26)
1
2Tm; jr.s.
vhere cosf; = - (——pg——3 )03, and - < b —Eg—.

Ve note that the upper bound of 3r/4 on the critical angle # is obtained
from the assumption that the resulting profit for each product i is
non-negative. On the other hand, the lower bound of 7/2 on the critical

angle # implies that parameters m , js ., and S5 should all be strictly

i!
positive in order for the profit maximization E0Q model to be

non- degenerate. From (24), the corresponding order size q; is:

0
. 4s.(PY- 1) 05 o
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2Ty Jris; 0.5

for =~ < 0 ¢ —§£— and cosf, = - (
T 1 4(P2 -r )3

i
For —%— <8< —gg—, it can be easily verified that the second order
sufficient conditions for the profit maximization are satisfied at (Qi,
qi) given by expression (26) and (27).

From (26) and (27), ve obtain the corresponding optimal price P, and
replenishment cycle length Ti as follows.

27m. jT;S.
For —%— <0< —§£— and cosf; = - ( 1173 0.5

a4 - r)°
0
* 2(P - 1'-) 6.
P, = P(i) - +— cosz(—3i) (28)
i« W TP B (29)
! jri(Pi - ri)

* *
Finally, we have to examine whether the solution g , @ satisfy the

constraint sets (2), (3), and (4). If they do, then they are optimal. If
they do not, then the constraints are active and we have to employ the
Lagrangian function and the Kuhn-Tucker conditions, as discussed in the
previous section, to find the optimal solutions.

In order to illustrate some of the features discussed in this
section, we will solve a two-product profit maximization problem over the
demand rate Qi and order size q; for i =1, 2. We will solve by the
trigonometric methods first. Let us assume that the following parametric

values are provided.

j =0.5 A =60 I=25
0 _ 0 _

P1 = 100 P2 = 67.49

m = 11.06 my = 12
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s1 =10 o = 12
ry = 1 Ty = 2

From equations (26) and (27), the optimal demand rate and order size for

product 1 and 2 are given by

* *
0, = 4.4, q; = 13.33;
* *
0, = 2.67, qy = 8.00.

It can be easily verified that the corresponding replenishment cycle
lengths for product 1 and product 2 are both equal to 3. On the other
hand, the corresponding storage space and inventory investment in this
problem are 50.67 and 22. Both the storage space and inventory investment
constraints are satisfied at the optimal solution.

In contrast to the trigonometric methods, if equations (28) of Cheng
[1] are used, the demand rate for product 1 will be 0.000255, 4.50923, or
4.44167. Ve note that no mechanism is provided in Cheng [1] that will
determine which one among the three candidates is the optimal solution.

cf. the trigonometric methods result in the unique demand rate.

SUMMARY
In this paper, we have presented two major revisions/ corrections
regarding a recent paper by T. C. E. Cheng [1]— "An E0Q Model with
Pricing Consideration". First, we pointed out that the critical assumption
of equal replenishment cycle length for each product was not incorporated
into his model formulation. The correct model should have contained n+2

constraints instead of two, and the number of the optimality Kuhn-Tucker
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conditions should have been fifteen instead of nine. Next, in the case of
linear demand functions, we indicated that the solutions provided by Cheng
[1] may result in non-optimal solution, or multiple candidates. By
employing the trigonometric methods, we derived the optimal closed-form
solution that is unique and obtained the conditions under which the

optimal closed-form solution is valid.

ACKENOVLEDGMENT
The authors would like to thank two anonymous referees for helpful

comments.

REFERENCES

1. T. C. E. Cheng. An E0Q model with pricing consideration. Computers
and Industirial Engineering. 18, 529-534 (1990).

2. V. H. Beyer. Standard NMathematical Tables, CRC Press, FL. (1981).

3. A. C. Chiang. Fundamental Nethods of Mathematical Economics,
McGraw-Hill, New York (1984).

4. M. D. Intriligator. Nathematical Optimizatiion and Economic Theory,
Prentice-Hall, New Jersey (1971).

5. D. G. Luenberger. Linear and Nonlinear Programming, Addison-Wesley,
Massachusetts (1984).

6. L. W. Griffiths. Introduction of the Theory of Equations, John Wiley
& Sons, New York (1945).

7. E. L. Porteus. Investing in reduced setups in the EQQ model.

Hanagement Science. 31, 998-1010 (1985).



125

CHAPTER V.

A TVO- STAGE BROKERAGE SYSTEM FOR ELECTRIC POWVER TRANSACTIONS

A paper accepted by

Proceedings of the Fourth Industrial Engineering Research Conference

Cheng-Kang Chen and K. Jo Min
Department of Industirial and Nanufacturing Systems Engineering
Towa State University of Science and Technology

Ames, IA 50011, U.S.A.

Abstract

We propose a two-stage brokerage system for electric power transactions.

By employing economic analysis and linear programming at each stage, we

show that significant gains in economic efficiency can be achieved.

Key Words: Costing, Brokerage, Linear Programming, Economic Efficiency,

Electric Power, Interconnected Power Network.
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1. Introduction

The electric power industry in the United States is currently facing
a drastic transformation from a traditional, regulated, and vertically
integrated environment to a de-regulated and competitive emvironment [6].
A primary motivation for this transformation is to improve the economic
efficiency in the power industry. A critical research area where the
power industry can improve the ecomomic efficiency is that of power
interchange in an interconnected power system. The power interchange may
improve the economic efficiency because there exist some potential savings
vhenever the difference in incremental production costs among utilities is
significant and excess production capacities exist. In this paper, for
the pover interchange transactions among utilities, we present a two-stage
brokerage system that will result in significant gains in ecomomic
efficiency.

The purpose of a brokerage system is to maximize the total benefit
(saving) by matching the bids from buyers and sellers. The conventional
brokerage system (see Doty and McEntire [1] or Fahd, Richards, and Sheble
[3] for details) matches the highest purchase bid with the lowest sale
bid, the second highest purchase bid with the second lowest sale bid, and
so on. The matching process terminates when a viable match no longer
exists. Doty and McEntire [1] proposed two algorithms to improve the
conventional brokerage systems: one employed a network flow algorithm and
the other utilized dynamic programming techniques. Fahd, Richards, and
Sheble [3] implemented an emergy brokerage system by employing linear

programming. In their model, buyers and sellers can use the transmission
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networks of intermediate utilities and pay for the transmission service
charges. The transmission service charges of their model are assumed to
be strictly positive. This assumption, however, is not universally
accepted. That is, the transmission service charges may be positive or
negative (see e.g., Li and David [4]). This implies that the transmission
service charges, in their model, do not reflect the true cost/benefit of
the intermediate transmission ufilities. In contrast, in this paper, we
attempt to design the transmission service charges so as to accurately
reflect the true cost/benefit of the intermediate transmission utilities
by considering physical aspects of the transmission such as the prevailing
direction of power flow. Furthermore, in our paper, the sellers, buyers,
and the intermediate transmission utilities actively calculate their net
costs and benefits in determining the sale and purchase bids and the
transmission service charges. This feature differentiates our paper from
the extant literature on electric power brokerage systems.

In our model, at the first stage, the brokerage system will match the
bids from buyers and sellers. At this stage, the brokerage system does
not take the transmission service charges of the intermediate transmission
utilities into account. At the second stage, based on the matching bids
of buyers and sellers, the brokerage system determines the route(s) with
the minimum transmission service charges. The transmission service
charges are based on an economic dispatch calculation employing a
transportation method (see e.g., Lee, Thorne, and Hill. [5]). The
following assumptions are made for the model:

1) Intermediate transmission utilities are neither buyers nor sellers.



128

2) The transmission service charges are small relative to the total
savings from power interchange tramsactions.

3) The electric power flow can be treated as a commodity that can be
transported by any selected transmission route subject to capacity
restrictions (with advanced transmission systems such as the flexible
AC transmission system (FACIS), it is a reasonable assumption, see
e.g., Li and David [4]).

The rest of this paper is organized as follows. First, we briefly
review an economic dispatch model employing a transportation method.
Then, we will show how the two-stage brokerage system is constructed.
Also, in order to elucidate the two-stage brokerage system, several

numerical examples are provided. Finally, the concluding remarks are made.

2. Review of a Tramsportation-Type Economic Dispatch Model

The conventional economic dispatch [8] concerns with the minimization
of production cost subject to demand- supply relations and generation
capacity constraints for an electric utility. The optimal solutionms,
however, do not specify the power flow direction on each transmission
line. In order to rectify this shortcoming and specify the power flow
directions, Lee, Thorne, and Hill [5] proposed an alternative economic
dispatch model employing a transportation method. Our model will utilize
this transportation-type economic dispatch model in determining bids for
buyers and sellers as well as transmission service charges for
intermediate transmission utilities. Hence, we first briefly review the

transportation- type economic dispatch model. We employ the same notations
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as in Lee, Thorne, and Hill [5] for an I-generator, N-bus, M-line system.
I(n) = number of generators connected to bus n,
M(n) = number of lines connected to bus n,

G = MV produced at generator i,

F.(G;)= the production cost for Gi MW at genmerator i,

D = MV load at bus n,

n
Rm = the resistance of transmission line m, measured in 1/MW,
Tm = MV transmitted on line m.

The subscripts i, n, m are dummy counters for I, N, ¥ respectively. Also,
in Lee, Thorne, and Hill [5], the transmission loss is directly related to
the amount of power on a transmission line and can be approximately
expressed by the following relation (see Elgerd [2] for details).
P =RT (1)
where P, is the transmission loss on line m.

M
Therefore, the total transmission loss in the system, PL =% RmTi. Now,

m

if we denote the marginal cost for transmission loss by h, then the cost
function for transmission loss in the system will be hPL.
Under these definitions and assumptions, the economic dispatch

problem can be mathematically formulated as follows.

I
Minimize: F = ¥ Fi(Gi) + hPp (2)
Ién) ¥(n)
subject to : G, - D, + T, =0 (3)
G; <6, <T forall i, (4)
0 < T | < T; for all m. (5)

It is noted that the decision variables in the above system are Gi’s and
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T,’s. Equation (3) represents the law of conservation at each bus (i.e.,
flow into the bus = flow out of the bus). Bar under and bar over
represent lower and upper limits on the decision variables. Also, in this
paper, we assume that the production cost function Fi(Gi) has a linear
relation with respect to the generation output Gi (see e.g., Fahd,
Richards, and Sheble [3] or Wood & Wollemberg [8]). Ve will first
introduce the following example to illustrate the tramsportatiomn-type
economic dispatch model. Also, this example will be further utilized
throughout this paper to illustrate the features of the two- stage

brokerage system for electric power tramsactionms.

G1 G2 G3 T1 T2 T3 T4 Cost

Utility 1 | 100 | 200 - 12.5 37.5 62.5 - 5303.1

Utility 2 | 150 | 350 | 200 27.3 77.3 | 272.7 | 150 | 19018.2

Utility 3 | 350 [ 150 - 92.9 | 257.1 | 207.1 - 9988.6

Utility 4 | 250 | 200 | 150 60.0 | 210.0 90.0 90 7114.0

Utility 5 | 250 | 150 | 150 | 116.7 16.7 | 150.0 | 150 | 14916.7

Table 1. Optimal solutions by employing the transportation-type
economic dispatch method

Example 1 We now consider the five-utility interconnected electric
power system shown in Figure 1. The relevant information of
the generators and the transmission lines for each utility is
shown in Appendix.

The optimal solution for each utility by employing the transportation-

type economic dispatch is shown in Table 1.
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Figure 1. Five-utility interconnected electric power system
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3. Basic Model for the Two-Stage Brokerage System

In this section, we will present the basic model for the two-stage
brokerage system. Specifically, we will show: 1) how to determine the
bids for buyers and sellers, 2) how to match the bids from buyers and
sellers, 3) how to determine the transmission service charges for the
intermediate transmission utilities, and 4) how to choose the route(s) to
transmit the electric power. 0One assumption we make on the
transportation- type economic dispatch model is that the linear terms in
the objective function (2) (i.e., the production cost terms) are dominant
relative to the non- linear terms in the objective function (2) (i.e., the
transmission loss cost terms). This is reasonable when the cost of

transmission loss is relatively small.

3.1 Determination of Bids for Buyers and Sellers

In this subsection, we show how the buyers and sellers determine
their purchase and sale bids. Because of our assumption that the linear
terms of the objective function (2) are dominant, the optimal strategies
under the transportation-type economic dispatch model dictate the
utilities produce power to the upper limit at the generator with smaller
incremental costs (see e.g., Fahd, Richards, and Sheble [3]).
Consequently, some extra generation capacities will exist at the generator
with the highest incremental cost within each utility. Hence, the utility
can produce power to the upper limit at the generator with the highest
incremental cost and sell the surplus power to other utilities. 0On the

other hand, the utility can shut down the generator with the highest
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incremental cost and purchase from other utilities the amount of power
that the shut-down generator produces. For example, if the optimal level
of the generation at the generator with the highest incremental cost and
the upper limit of that generator are GI and G;, then the possible sale

quantity and purchase quantity of electric power for the utility are G; -
G; and G;, respectively. Also, we note that the purchase price and sale

price for the electric power equal the incremental cost of the electric

power being generated (see e.g., Fahd, Richards, and Sheble [3]).

Utility |MW to Buy|Purchase Price{Utility|MW to Sell|Sale Price
1 200 20 1 50 20
3 150 25 3 30 25
5 150 35 5 150 35

Table 2. Purchase and sale bids for buyers and sellers

Example 2 (Continued from Example 1) Suppose only utility 1, utility 3,
and utility 5 in the interconnected power system as shown in
Fig. 1 can be buyers or sellers (i.e., only utility 2 and
utility 4 can be intermediate transmission utilities).

The buying and selling bids for these utilities are as shown in Table 2.

3.2 The First Stage of the Brokerage System: Matching Bids from Buyers
and Sellers
Once the central broker receives the bids from buyers and sellers, a
linear programming model is set up to match the bids. At this stage, the

brokerage system does not take the transmission service charge of the
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intermediate transmission utilities into account. We denote the per MW
saving of the transaction between buyer j and seller i by ACij. The
decision variable, the amount of transacted power between seller i and
buyer j, is denoted by Iij' The objective of this matching process is to
maximize the total saving for all possible transactions subject to
supply- demand constraints. Hence, we are concerned with the tramsactions

with positive saving (i.e., AC,. > 0). Therefore, we mathematically

1]
formulate the matching process as the following linear programming.

Maximize: ¥ Iij ACij (6)
subject to: I L. < I forall i, (7

AP J P
% Ii' < I. for all j, (8)

i,itj 17
Iij > 0, for all i and j. (9)

where I?:sale quantity of seller i, and I?:purchase quantity of buyer j.

Utility to Sell|Utility to Buy|Purchase Sale .
Power (i) Power (j) | Price (°pj)|Price(Csi) |Saving(4C;,)
1 3 25 20 5
1 5 35 20 15
3 5 35 25 10

Table 3. Positive cost coefficients of objective function in linear
programming formulation.

Example 3 (Continued from Example 2) Let us perform the matching
process for utility 1, utility 3, and utility 5 based on the
results of Example 2.

The cost coefficients (’s) that are positive are shown in Table 3. The
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linear programming formulation for the matching process is now as follows.

Maximize: 5 113 +15 I,. + 10 1

15 35
subject to: 113 + I15 < 50
135 < 30
113 < 150
115 + 135 < 150
Iij > 0, for all i and j.

The corresponding optimal solution is as follows: 113 =0, 115 = 50, 135 =
30, and the total saving = 1050.

3.9 Calculation of Transmission Service Charges for Intermediate

Transmission Utilities

After obtaining the outcomes of the matching process via linear
programming, the central broker will inform the relevant intermediate
utilities to provide transmission facilities and the corresponding
transmission service charges. For example, utility 2 and utility 4 are
the relevant intermediate utilities to the transactions among utility 1,
utility 3, and utility 5 (see Figure 1). In this subsection, we discuss
how an intermediate transmission utility determines his transmission
service charge. Specifically, by treating the injected power and the
extracted power due to the transaction as additiomal generatioms or
additional loads, we can re-formulate the transportation-type economic
dispatch model for the intermediate transmission utility. The
transmission service charge (TSC) can be calculated from the difference in

the total cost for the intermediate transmission utility with the
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transaction and without the transaction (see e.g., Shirmohammadi [7]).
Namely,

TSC = Total Cost with Transaction - Total Cost without Transaction

Example 4 (Continued from Example 3) Suppose the transaction between
utility 1 and utility 5 employs the transmission facilities of
utility 2. The configuration of the power system network is
shown as Figure 1. Let us now determine the transmission
service charge for utility 2.

For utility 2, we consider the transaction between utility 1 and utility 5

by treating bus 4 has an additional injected power generation of 50 MW and

bus 3 has an additional extracted power load of 50 MW. By re-calculating
the transportation-type economic dispatch, the optimal total cost with the
transaction for utility 2 can be easily obtained as $18518.2. Therefore,

the transmission service charge is equal to -$500 (= 18518.2 - 19018.2).

The negative sign of the transmission service charge indicates the

intermediate transmission utility is benefitted from providing

transmission facilities.

3.4 The Second Stage of the Brokerage System: Selection of Route(s) to
Transmit Electric Power
In the second stage of the brokerage system, after receiving the
information of the transmission service charges from all relevant
intermediate transmission utilities, the central broker will choose the

route (or routes) with the minimum cost to transmit power. We assume that
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when there are multiple routes to transmit power for a tramsaction, the
central broker will choose the one(s) with the least number of
intermediate transmission utilities involved. It is reasonable because
the more intermediate transmission utilities are involved, the more
complex the tramsactions will physically become. When there are more than
one route with the same least number of intermediate transmission
utilities involved, the central broker will choose the one with the
minimum transmission service charge. If the route with the minimum
transmission service charge reaches its transmission capacity limit, then
the central broker will choose the route with the second minimum
transmission service charge, and so on. This process will be continued
until all the transacted power has been transmitted, or all transmission
capacity is exhausted. After the second stage of the brokerage system,
the transactions among buyers, sellers, and intermediate transmission
utilities are finalized.
Example 5 (Continued from Example 4) Let us determine the routes for

the transactions from the matching process at the first stage

of the brokerage system.
For the transaction between utility 1 and utility 5 (Iij = 50MW), the
transacted pover can be transmitted via utility 2 or utility 4. Hence,
the comparison of the transmission service charges from utility 2 and
utility 4 is necessary. By considering the configuration of the electric
pover network shown in Figure 1 and employing the method described earlier
for transmission service charges, we can have the transmission service

charges shown in Table 4.
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From Table 4, it is noted that the central broker will choose utility 2 as
the intermediate transmission utility for the transaction between utility
1 and utility 5 due to tne smaller transmission service charge.

For the transaction between utility 3 and utility 5, there is only

) . . ; . Transmission
Transmit Power{with Transaction|without Transaction Service Charge
via Utility 2 18518.2 19018.2 - 500
via Utility 4 7356.0 7114.0 242

Table 4. Transmission service charges for intermediate transmission
utilities.

one route (i.e., via utility 4) to tramsmit power from utility 3 to
utility 5. For utility 4, the total costs with transaction and without
transaction are $7057.84 and $7114.0; therefore, the transmission service

charge is - $56.16.

4. Concluding Remarks

In this paper, a two-stage brokerage system for electric power
transactions in an intercommected power system is presented. In the
first-stage of the brokerage system, a linear programming model is set up
to maximize the total saving from all potential tramsactions. In the
second stage of the brokerage system, a method is presented to find the
route(s) with the minimum transmission service charge for all
transactions.

There are several possible extensions that will further improve the

model presented in this paper. These extensions include incorporation of



139

more sophisticated features of power systems such as the voltage, phase

angle, and security issues into the interconnected power system.
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Appendix

The relevant data of the interconnected power system shown in Figure 1.

Incremental Cost§$7HW) Upper Limit[Lower Limit
or Resistance(1/MW) (MW) (MW)
Generator 1 12 100 0
(enerator 2 20 250 0
Utility 1 Line 1 0.001 100 0
(h=15) Line 2 0.002 100 0
Line 3 0.001 100 0
Generator 1 30 300 0
Generator 2 25 350 0
Generator 3 15 200 0
Utility 2 Line 1 0.0015 150 0
(h=20 Line 2 0.003 200 0
Line 3 0.001 400 0
Line 4 0.002 250 0
Generator 1 10 350 0
Generator 2 25 180 0
Utility 3 Line 1 0.005 200 0
(h=20) Line 2 0.001 500 0
Line 3 0.001 300 0
Generator 8 250 0
Generator 2 10 200 0
Generator 3 15 250 0
Utility 4 Line 1 0.001 200 0
(h=12) Line 2 0.001 400 0
Line 3 0.001 300 0
Line 4 0.002 200 0
Generator 1 25 250 0
Generator 2 10 150 0
Generator 3 35 300 0
Utility 5 Line 1 0.001 250 0
(h=25) Line 2 0.001 200 0
Line 3 0.001 250 0
Line 4 0.002 300 0




141

CHAPTER VI.

A TRILATERAL BROKERAGE SYSTEM FOR POVER TRANSACTIONS

A paper to be submitted to

International Journal of Energy Research

Cheng- Kang Chen and K. Jo Min

Summary
In this paper, we design and analyze a brokerage system for buyers,
sellers, and intermediate utilities of electric power. Specifically, we
mathematically characterize the determination of bids by buyers and
sellers, the matching process of bids, and the selection of the
transmission routes by the brokerage system. Moreover, we analyze the
cost/benefit to intermediate utilities from the transmission of transacted
pover. The two key features differentiating this model from the extant
literature on electric power transmission pricing and brokerage systems
are: (1) multiple purchase and sale bids from potential buyers and sellers
and (2) the systematic determination of tramsmission routes from
minimizing the total cost to intermediate utilities. The improvement in
economic efficiency (measured in terms of cost savings) is demonstrated

via a series of numerical examples.
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1. Imtroduction

The electric power industry in the United States is currently facing
a drastic transformation from a traditiornal, regulated, and vertically
integrated environment to a de-regulated and competitive environment
(McCalley and Sheble ,1994). A primary motivation for this transformation
is to improve the economic efficiency in the power industry. A critical
research area where the power industry can improve the ecomomic efficiency
is that of power interchange in an interconnected power system. The power
interchange may improve the economic efficiency because there exist some
potential savings whenever the difference in incremental production costs
among utilities is significant and excess production capacities exist.

For the power interchange transactions among utilities, Chen and Min
(1995) presented a two- stage brokerage system to match purchase bids and
sales bids as well as to select the route(s) to tramsmit electric power.
In this paper, by extending Chen and Min (1995) to allow multiple purchase
bids and sale bids from each potential buyer and seller and by formulating
the problem of selecting route(s) to transmit electric power as a
nonlinear program, we show that the economic efficiency of the brokerage
system for power transactions can be significantly improved.

The purpose of a brokerage system is to maximize the total benefit
(saving) by matching the bids from buyers and sellers. The conventional
brokerage system (see Doty and McEntire, 1982; or Fahd, Richards, and
Sheble, 1992. for details) matches the highest purchase bid with the
lovest sale bid, the second highest purchase bid with the second lowest

sale bid, and so on. The matching process terminates when a viable match
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no longer exists. Doty and McEntire (1982) proposed two algorithms to
improve the conventional brokerage systems: one employed a network flow
algorithm and the other utilized dynamic programming techniques. Fahd,
Richards, and Sheble (1992) implemented an energy brokerage system by
employing linear programming. In their model, buyers and sellers can use
the transmission networks of intermediate utilities and pay for the
transmission service charges. The transmission service charges of their
model are assumed to be strictly positive. This assumption, however, is
not universally accepted. That is, the transmission service charges may
be positive or negative (see e.g., Li and David, 1994). This implies that
the transmission service charges, in their model, do not reflect the true
cost/benefit of the intermediate transmission utilities. In comtrast to
Fahd, Richards, and Sheble (1992), Chen and Min (1995) proposed a
two- stage brokerage system for power transactions so as to accurately
reflect the true cost/benefit of the intermediate transmission utilities
by considering physical aspects of the transmission such as the prevailing
direction of power flow. In Chen and Min (1995), at the first stage, the
brokerage system matches purchase bids and sale bids from buyers and
sellers. Specifically, each buyer (seller) is restricted to have a single
purchase (sale) bid. At the second stage, the brokerage system determines
the route(s) to transmit the transacted power by some pre-specified rules.

In this paper, the two-stage trilateral brokerage system for power
transactions is improved and extended as follows.

1) At the first stage, Chen and Min (1995) restricted each potential

buyer or seller can only submit a single purchase bid and a single sale
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bid. In this paper, multiple purchase bids and multiple sales bids are
allowed for the buyer and the seller to submit to the central broker. The
option of multiple purchase bids and multiple sale bids from the buyer and
the seller may result in increased total cost saving because the case of a
single purchase bid and a single sale bid from each buyer and each seller
is a subset (or a special case) of the case that multiple purchase bids
and sale bids are allowed.

2) At the second stage, Chen and Min (1995) presented some specified
rules for the central broker to transmit the transacted power. That is,
vhen there are multiple routes to transmit power for a transaction, the
central broker will choose the one(s) with the least number of
intermediate transmission utilities involved. When there are more than
one route with the same least number of intermediate transmission
utilities involved, the central broker will choose the one with the
minimum transmission service charge. If the route with the minimum
transmission service charge reaches its transmission capacity limit, then
the central broker will choose the route with the second minimum
transmission service charge, and so on. In contrast to Chen and Min
(1995), instead of employing these pre-specified rules, we mathematically
formulate the problem of selecting route(s) to transmit the transacted
power as a nonlinear program. The objective now becomes to minimize the
sum of the total cost of the intermediate transmission utilities involved
in providing transmission facilities subject to the supply-demand
relations at each bus and the capacity limits of each generator and each

transmission line of the intermediate transmission utilities. In such a
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case, the optimal solution for selecting route(s) to transmit the

transacted power can be obtained.

By incorporating the above two aspects and by employing a numerical
example, we will show that the economic efficiency of the brokerage system
for power transaction can be significantly improved.

The following assumptions are made for the model:

1) Intermediate transmission utilities are neither buyers nor sellers.

2) The transmission service charges are small relative to the total
savings from power interchange transactions.

3) The electric power flow can be treated as a commodity that can be
transported by any selected transmission route subject to capacity
restrictions (with advanced transmission systems such as the flexible
AC transmission system (FACIS), it is a reasonable assumption, see
e.g., Li and David, 1994).

The rest of this paper is organized as follows. First, we briefly
review an economic dispatch model employing a transportation method.
Then, we will show how the two-stage trilateral brokerage system is
constructed. Also, in order to elucidate the two-stage trilateral
brokerage system, several numerical examples are provided. Finally, the

concluding remarks are presented.

2. Review of a Transportation- Type Economic Dispatch Nodel
The conventional econmomic dispatch (Wood and Wollenberg, 1984)
concerns with the minimization of production cost subject to demand- supply

relations and generation capacity constraints for an electric utility.
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The optimal solutions, however, do not specify the power flow direction on
each transmission line. In order to rectify this shortcoming and specify
the pover flow directions, Lee, Thorne, and Hill (1980) proposed an
alternative economic dispatch model employing a transportation method.
Gur model will utilize this tramsportation-type economic dispatch model in
determining bids for buyers and sellers as well as transmission service
charges for intermediate transmission utilities. Hence, we first briefly
review the transportation-type economic dispatch model. We employ the
same notations as in Lee, Thorne, and Hill (1980) for an I-gemerator,
N-bus, M-line system.

I(n) = number of generators connected to bus n,

¥(n) = number of lines comnected to bus n,
G = MV produced at gemerator i,
F.(6;)= the production cost for G; MV at generator i,
D = MW load at bus n,
= the resistance of transmission line m, measured in 1/MW

= MV transmitted on line m,

B'-J EF’ (=]

The subscripts i, n, m are dummy counters for I, N, M respectively. Also,
in Lee, Thorne, and Hill (1980), the transmission loss is directly related
to the amount of power on a transmission line and can be approximately
expressed by the following relation (see Elgerd, 1971. for details).

Pln = RmTi (1)
vhere PLm is the transmission loss on line m. Therefore, the total

.|
transmission loss in the system, PL =% RmTi. Now, if w= denote the

marginal cost for transmission loss by h, then the cost function for
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transmission loss in the system will be hPL.
Under these definitions and assumptions, the economic dispatch

problem can be mathematically formulated as follows.

I
Minimize: F = ¥ Fi(Gi) + hPp (2)
Ién) M(n)
subject to : G, - D + T,=0 (3)
Ei <G <G forall i, (4)
0¢ ITm] < T for all m. (5)

It is noted that the decision variables in the above system are Gi’s and
T ’s. Equation (3) represents the law of conservation at each bus (i.e.,
flow into the bus = flow out of the bus). Bar under and bar over
represent lower and upper limits on the decision variables. Also, in this
paper, we assume that the production cost function Fi(Gi) has a linear
relation with respect to the generation output 6 (see e.g., Fahd,
Richards, and Sheble, 1992; or Wood & Wollenberg, 1984). We will first
introduce the following example to illustrate the transportation-type
economic dispatch model. Also, this example will be further utilized
throwghout this paper to illustrate the features of the two-stage

brokerage system for electric power transactioms.

Example 1 We now consider the five-utility interconnected electric power
system shown in Figure 1. The relevant information of the generators and
the transmission lines for each utility is shown in Appendix. The optimal
solution for each utility by employing the transportation- type economic

dispatch is shown in Table 1.
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Figure 1. Five-utility interconnected electric power system
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G, G, Gg T, T, T4 T, Cost

Utility 1 { 100 | 200 0 12.5 37.5 62.5 - 3303.1

Utility 2 | 150 | 350 | 200 27.3 77.3 | 272.7 | 150 | 19018.2

Utility 3 | 350 | 150 0] 175.0 | 175.0 | 125.0 - 9400.0

Utility 4 | 250 | 200 | 150 60.0 | 210.0 90.0 90 7114.0

Utility 5 | 250 | 150 | 150 | 116.7 16.7 | 133.3 | 150 | 14916.7

Table 1. Optimal solution from transportation-type economic dispatch
model.

3. The Trilateral Brokerage System

In this section, we will present the basic model for the two- stage
trilateral brokerage system. Specifically, we will show: 1) how the
buyers and the sellers determine their purchase bids and sale bids, 2) how
the brokerage systems matches the purchase bids from buyers and sale bids
from sellers, 3) how the brokerage system chooses the route(s) to tramsmit
the transacted electric power, and 4) how the intermediate transmission
utilities can be benefited or cost by providing transmission facilities.
One assumption we make on the transportation-type economic dispatch model
is that the linear terms in the objective function (2) (i.e., the
production cost terms) are dominant relative to the non- linear terms in
the objective function (2) (i.e., the transmission loss cost terms). This

is reasonable when the cost of transmission loss is relatively small.
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8.1 Determination of Bids for Buyers and Sellers

In this subsection, we show how the buyers and sellers determine
their purchase and sale bids under the assumption that multiple purchase
bids and sales bids are allowed to submit to central broker from each
potential buyer or seller. Because of our assumption that the linear
terms of the objective function (2) are dominant, the optimal strategies
under the transportation- type economic dispatch model dictate the
utilities produce power to the upper limit at the generator with smaller
incremental costs (see e.g., Fahd, Richards, and Sheble, 1992).
Consequently, some extra gemeration capacities will exist at the
generators with the higher incremental cost within each utility. Hence,
the utility can produce power to the upper limits at the generators with
the higher incremental costs and sell the surplus power to other
utilities. On the other hand, the utility can shut down the generators
vith the lower incremental costs and purchase from other utilities the
amount of power that the shut-down generators produce. For example,
suppose there are five gemerators within an electric utility, and the
optimal levels of these five gemerators are GI = GI, G; = GE, G; = é3
(where Gg < é3 < Gg), GZ = G; = 0, respectively. Then the possible sale

~

quantities for sale bids are Gg —Gg, GZ, and Gg. On the other hand, the
possible purchase quantities for purchase bids are é3, G;, and GI. Also,
we note that the purchase price and sale price for the electric power
equal the incremental cost of the electric power being generated (see

e.g., Fahd, Richards, and Sheble, 1992).
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Purchase Bids
Utility | Bids | MW to Purchase | Purchase Price
1 1st 200 12
1 2nd 100 8
3 1st 150 20
3 2nd 350 10
5 1st 150 35
5 2nd 250 25
5 3rd 150 10
Sale Bids
Utility | Bids MV to Sell Sale Price
1 1st 50 12
1 2nd 100 18
3 1st 100 20
3 2nd 150 30
5 1st 150 35

Table 2. Purchase and sale bids for buyers and sellers.

Example 2 (Continued from Example 1) Suppose only utility 1, utility 3,
and utility 5 in the interconnected power system as shown in Fig. 1 can be
buyers or sellers (i.e., only utility 2 and utility 4 can be intermediate
transmission utilities). Then the buying and selling bids for these
utilities are as shown in Table 2.

We note that, if we allow single purchase bid and single sale bid in

this example, there are only three purchase bids and three sale bids.
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3.2 Matching Bids from Buyers and Sellers: Formulation of Linear
Programming

Once the central broker receives the bids from buyers and sellers, a
linear programming model is set up to match the purchase bids and sale
bids. At this stage, the brokerage system does not take the transmission
service charge of the intermediate transmission utilities into account.
Ve denote the per MW saving of the transaction between buyer b’s ith
purchase bid and seller s’s jth sale bid by Acbi,sj‘ The decision
variable, the amount of transacted power between seller s’s jth sale bid
and buyer b’s ith purchase bid is denoted by Ibi,sj‘ The objective of
this matching process is to maximize the total saving for all possible
transactions subject to supply-demand constraints. Hence, we are only
concerned with the tramsactions with positive saving (i.e., Acbi,sj > 0).
Therefore, for the terms corresponding to positive ACbi,sj’s only, we
mathematically formulate the matching process as the following linear
programming.

Maximize: Y I,. . AC.. . 6
aximize b, bi,sj 4Cbi,s; (6)

subject to: b?i Ibi,sj < Isj for all s and j, (7)

$ I. .<I. forallbandi (8)
s, ] bi,sj & “bi ’
Tyi,sj 2 0» for all b, s, i and j. (9)

vhere ISj is the total sale quantity for seller s’s jth bid and Ibi is the
total purchase quantity for buyer b’s ith bid.
Example 3 (Continued from Example 2) Let us perform the matching process

for utility 1, utility 3, and utility 5 based on the results of Example 2.



153

Utility to Sell Power|Utility to Buy Power Pgrghase Sale Saving

Utility Bids Utility Bids rice |Price
1 ist 3 1st 20 12 8
1 1st 5 1st 35 12 23
1 1st 5 2nd 25 12 13
1 2nd 3 1st 20 18 2
1 2nd 5 1st 35 18 17
1 2nd 5 2nd 25 18 7
3 1st 5 1st 35 20 15
3 1st 5 2nd 25 20 5
3 2nd 5 1st 35 30 5

Table 3. Positive cost coefficients of objective function in linear
programming.

The cost coefficients (’s) that are positive are shown in Table 3.

The linear programm for the matching process is now as follows.

Maximize:

8 Is 11

+ 7 151’1

2

+ 23 15
+15 1

+13 I

1,11 52

+51

51,31 52

subject to: 131,11 + 151,11 + 152,11 < 50

31,12

I
I
I
I
I
1

+

+

£

v

1
1

51,12

52,31
150

1
I

159,12
0, for

31,12
51,12

+lgg 1981
< 30

< 150

+ 151,31 + 1
+ 152,315 25
all b, s, i

a1t 2131 19
31 9 I5 39
00

51,32 $ 190

0

and j.

+ 171

51,12
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The corresponding optimal solution is as follows: 131’11 = 152’11 = 131,12
= I59,12 = I51 31 = 154 39 = 05 I5q 44 = 50, Ig; 49 =100, and Iy, 5 =
30. That is, utility 5 will purchase 150 MV from utility 1 and 30 MW from
utility 3, and the total cost saving is $3000. Ve note that, given the
same model enviromments in this example, if only single purchase bid and
single sale bid are allowed from the potential seller and buyer to submit
to central broker, the result is: utility 5 purchases 50 MW from utility 1
and 30 MV from utility 3, and the total cost saving is $1700 (see Chen and
Min, 1995, for details). From this comparison, by allowing multiple
purchase bids and multiple sale bids from each potential seller and buyer,
the total cost saving is increased by $1300 which is approximately 76.57%
(= (3000-1700)/1700).

3.8 Selection of Route(s) to Transmit Electric Power

After obtaining the outcomes of the matching process via linear
programming, the central broker will inform the relevant intermediate
utilities to provide transmission facilities. For example, utility 2 and
utility 4 are the relevant intermediate transmission utilities to the
transactions among utility 1, utility 3, and utility 5 (see Figure 1). In
this subsection, we discuss how the central broker chooses the route (or
routes) to tramsmit the transacted power. We assume that the central
broker has the complete information of the relevant intermediate
transmission utilities such as incfemental cost at each generator,
resistance at each transmission line, etc. Also, we note that the

injected power and the extracted power due to the transaction can be
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treated as additional generations or addition loads for the intermediate
transmission utility. For the central broker, the objective is to
minimize the sum of the total costs of intermediate transmission
utilities. In order to mathematically formulate the problem, we first

introduce the following notations.

Gij = the generation output at generator j of utility i.
Tim = MV transmitted at transmission line m of utility 1i.
ITU

X5, = MV transmitted from seller s to buyer b via ITU (intermediate

transmission utilities)

Therefore, the objective function can be formulated as follows.
_ 2
Minimize: ie?TUICi = ? [ ? Fij(Gij) + by ﬁ R;pTin (10)
Also, the conservation law at bus j (i.e., flow in = flow out at each bus)
within utility i can be expressed as follows.

B Gy - Dy + BTy + 3 XU = 0 for all bus j within utility i (11)

We should also consider the generation capacity limits at each generator
as well as the transmission capacity limits at each transmission line.

The total amount of transacted power from seller s to buyer b, Isb’ should
be equal to or greater than the sum of the MW transmitted from seller s to
buyer b through all different intermediate transmission utilities (i.e.,

) ngu). Therefore, the complete mathematical formulation for the
ITU

central broker to choose the route(s) is as follows.



Minimize: X TCi
ieITU
subject to:
o Gl
ITU
ij ¢ O
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2
S [EF..(6..) +h, ZRTS ]
i j 1] 1] 1 n im 1im

ITU
ot stb

sb = Isb for all transactions

< G;} for all i and j

0 ¢ |Typl € T, for all i and m.

We note that the decision variables in the model are Xi%u’

(12)

= 0 for all bus j of utility i  (13)

(14)
(15)
(16)

b
s and Tim S.

Example 4 (Continued from Example 3) Select the routes to transmit the

transacted power of 150 MW from utility 1 to utility 5 and 30 MW from

utility 3 to utility §5.

According to Figure 1 and the result of matching process from Example

3, we can have the following mathematical formulation for this problem.

Minimize 3OG21+25G22
2 2
0.002T24) +8G41+10G42+15G43+ 12(0.001T41 + 0.001T

2
0.001T43 +

G -

subject to : 21
G

99 "
Gog -
T

+

22

Gy -
G
G

T

42

43
42

+

2

2
91 * 0.003T22

+15Goq+ 20(0.0015T

0.0021%,)

100 + Ty, - Tyy = 0

50 - Tyy - Tgg = 0

50 - Ty, - Xi; - Xgo = 0

Tyg + Toy - 500 + Xog + X3z = 0
100 + Ty - Tyy = 0

50 - Tyy - Tgy + Ky5 - Xgg = 0
150 + T,y - Tyg - Xix - Xog = O

4 42
T43 - 300 + X35 + X35 =0

+ 0.00172, +

23
2
a2 *
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9 .4
X5 *+ X5
4 49
X35 + X35

A

150

I

30
GI; for i

[
A
[p]
I

1,2, 3, 4and j =2, 4

0 < ITiml < T;; fori=2,4andm=1, 2, 3, 4.

By employing GIN0 (an mathematical optimization software), we can easily

obtain the optimal solution as follows: st = 150, ng = 30, X%s = 0, and

Xgg = 0. That is, 150 MV from utility 1 to utility 5 will utilize the
transmission facilities of utility 2 while 30 MV from utility 3 to utility
5 will utilize the transmission facilities of utility 4 amnd utility 2. If
wve employ the pre-specified rules developed in Chen and Min (1995), the
result of selecting routes to transmit the transacted power is to utilize
the transmission facilities of utility 2 to transmit 150 MW from utility 1

to utility 5 (i.e., X35 = 150) and utilize the transmission of utility 4

to transmit 30 MW from utility 3 to utility 5 (i.e., 2

35 = 30).

3.4 Cost/Benefit Calculation for Intermediate Transmission Utilities

The transmission service charge (TSC) can be calculated from the
difference in the total cost for the intermediate transmission utility
with the transaction and without the transaction (see e.g., Shirmohammadi
et al., 1991). Namely,

IS¢ = Total Cost with Traensaction - Total Cost without Transaction

Example 4 (Continued from Example 3) Calculate the transmission service
charges for utility 2 and utility 4.

For utility 2, we consider: 1) the transaction between utility 1 and
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utility 5 by treating bus 4 has an additional injected power gemeration of
150 MV and bus 3 has an additional extracted power load of 150 MW; and 2)
the transaction between utility 3 and utility 5 by treating bus 4 has an
additional injected power generation of 30 MW and bus 3 has an additionmal
extracted power load of 30 MW. By re-calculating the transportation- type
economic dispatch, the optimal total cost with the tramsactions for
utility 2 can be easily obtained as $i8154.2. Therefore, the transmission
service charge for providing transmission facilities for utility 2 is
equal to -$864 (= 18154.2 - 19018.2). The negative sign of the
transmission service charge indicates the intermediate transmission
utility is benefited from providing transmission facilities.

For utility 4, the total costs with tramsaction and without
transaction are $6932.56 and $7114. Therefore, the transmission service
charge is - $181.44.

Ve note that, from the perspective of the central broker, the total
sum of the transmission service charges for the brokerage system is
-$1045.44 (= -864 -181.44). Under the same model environments, if we
employ the pre-specified rules proposed in Chen and Min (1995), the total
sum of the transmission service charges is -$956.16. The economic

efficiency is improved approximately 9.337% (= (1045.44-956.16)/956.16).

4. Concluding Remarks
In this paper, we extended the model of the two-stage trilateral
brokerage system discussed in Chen and Min (1995) to the fellowing two

aspects. First, the restriction of single purchase bid and single sale
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bid from each potential buyer and seller is relaxed. In this paper, we
allow multiple purchase bids and multiple sale bids from each potential
buyer and seller. By formulating a linear program to maximize the total
cost saving in matching bids from sellers and buyers, we show that the
total cost saving can be significantly improved under the assumption that
multiple purchase bids and multiple sale bids are allowed. Second,
instead of employing the pre-specified rules proposed in Chen and Min
(1995) to determine the route(s) to transmit the transacted power , we
mathematically formulate the problem of selecting routes to transmit the
transacted power as a nonlinear program. In such a case, the optimal
solution for selecting route(s) to transmit the transacted power can be
obtained.

There are several possible extensions that will further improve the
model presented in this paper. These extensions include incorporation of
more sophisticated features of power systems such as the voltage, phase

angle, and security issues into the intercomnected power system.
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Appendix

The data information of the interconnected power system shown in Figure 1.

Incremental Cost($/MW) [Upper Limit[Lower Limit
or Re31stance(1 (MV) (MW)
Generator 1 100 0
Generator 2 12 250 0
Utility 1{Generator 3 18 100 0
(h=15) Line 1 0.001 100 0
Line 2 0.002 100 0
Line 3 0.001 100 0
Generator 1 30 300 0
Generator 2 25 350 0
Generator 3 15 200 0
Utility 2 Line 1 0.0015 150 0
(h=20) Line 2 0.003 200 0
Line 3 0.001 400 0
Line 4 0.002 250 0
Generator 1 10 350 0
Generator 2 20 180 0
Generator 3 30 150 0
Utilit Line 1 0.002 200 0
(h=20 Line 2 0.001 500 0
Line 3 0.001 300 0
Generator 1 8 250 0
Generator 2 10 200 0
Generator 3 15 250 0
Utility 4 Line 1 0.001 200 0
(h=12 Line 2 0.001 400 0
Line 3 0.001 300 0
Line 4 0.002 200 0
Generator 1 25 250 0
Generator 2 10 150 0
Generator 3 35 300 0
Utility 5 Line 1 0.001 250 0
(h=25) Line 2 0.001 200 0
Line 3 0.001 250 0
Line 4 0.002 300 0




162

GENERAL CONCLUSIONS

In this dissertation, we investigated how lot-size decision makers
and electric power utilities determine critical economic quantities so as
to improve the economic efficiency of operations. Throughout this
dissertation, the optimal policies were obtained through linear and
nonlinear programming techniques. For each model, interesting managerial
insights and economic implications were obtained and illustrative
numerical examples were provided. For each chapter of this dissertation,
we present a detailed summary and possible extensions as follows.

In Chapter 1, we constructed and analyzed E0§- type models for a buyer
vho was just informed of a temporary sale. For such a buyer, optimal
inventory/disposal policies were derived by comparing cost savings of
various cases. By analyzing the optimal inventory/disposal policies,
several managerial insights were obtained. Several possible extensions
can be made to enhance the inventory model developed in Chapter 1. For
example, one class of extensions can be made with respect to the option of
disposal. In Chapter 1, it is assumed that the seller will not react to
the buyers’ disposal (if amy). It would be of interest to investigate
several possible policies of a seller. e.g., prohibition of disposals,
benefit sharing of disposals, etc. We believe that such extensions will
improve the applicability in practice of the inventory/disposal models in
response to sales. We hope this improvement in applicability will result

in increased economic efficiency for the buyer (as well as the seller).
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In Chapter 2, we constructed and analyzed an FE0Q- type model for a
buyer who is just informed of a pre-amnounced sale. By "a pre-announced
sale", we mean the announcement time of the sale occurs before the
beginning time of the sale. For such a buyer, optimal inventory policies
are derived by comparing cost savings of various cases. By analyzing the
optimal inventory policies, several managerial insights are obtained.
Several possible extensions can be made to enhance the inventory models
developed in Chapter 2. For Example, it is assumed that the sale period
is less than one regular E0( replenishment cycle. By relaxing this
assumption and allowing the sale period is greater than one regular EGQ
replenishment cycle, interesting models that augment the models in Chapter
2 can be developed.

In Chapter 3, we constructed and analyzed inventory and investment in
setup cost operations models under profit maximization and return on
investment maximization for lot-size decision makers. First, we showed
how inventory and investment in setup operations models under prefit
maximization and return on investment maximization can be formulated for
general functional form of the investment in setup operations. From these
formulations, the optimality conditions and the corresponding economic
interpretations are obtained. Next, for the specific cases of the linear
setup cost and the hyperbolic setup cost, the optimal closed-form
solutions are obtained and several interesting managerial insights are
presented.

The models developed in Chapter 3 relates general practices since

numerous industries and firms apply E0Q based decision making for their
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inventory systems. There are several possible extemsions that will
further improve the relevance of our models to general practices. They
include incorporation of more sophisticated features such as shortages,
delivery lags, and stochastic demand rates, etc. From the perspective of
investing in setup operations, it would be of interest to study the
allocation of the investment in setup operations. For example, how much
should be invested in purchasing or leasing new equipments and how much
should be invested in labor’s training and wages, etc. From the
perspective of optimization criterion, it would be of interest to study
the effects of investing in setup operations on process quality
improvement, effective capacity and flexibility improvement (see e.g.,
Porteus, 1986, and Spence and Porteus, 1987) in conjunction with the
optimization criterion of return on investment.

In Chapter 4, we presented two major revisions/corrections regarding
a recent paper by T. C. E. Cheng (1990) — "An EOQ Model with Pricing
Consideration". First, we pointed out that the critical assumption of
equal replenishment cycle length for each product was not incorporated
into his model formulation. We reformulated the entire model and derived
the corresponding Kuhn- Tucker conditions. Next, in the case of linear
demand functions, we indicated that the solutions provided by Cheng (1990)
may result in non-optimal solution, or multiple candidates. By employing
the trigonometric methods, we derived the optimal closed-form solution
that is unique and obtained the conditions under which the optimal
closed- form solution is valid.

In Chapter 5, a two-stage brokerage system for electric power
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transactions in an interconnected power system is presented. In the
first- stage of the brokerage system, a linear programming model is set up
to maximize the total saving from all potential tramsactions. In the
second stage of the brokerage system, a method is presented to find the
route(s) with the minimum transmission service charge for all
transactions.

Chapter 6 revised Chapter 5 in the following two aspects. First,
multiple purchase bids and multiple sales bids are allowed for the buyers
and the sellers to submit to the central broker. This may result in
increased total cost saving because the case of a single purchase bid and
a single sale bid from each buyer and each seller is a subset (or special
case) of the case that multiple purchase bids and sale bids are allowed.
Second, we mathematically formulate the problem of selecting route(s) to
transmit the transacted power as a nonlinear program. In such a case, the
solution for selecting route(s) to transmit the transacted power can be
optimally obtained.

There are several possible extensions that will further improve the
models presented in Chapter 5 and Chapter 6. These extensions include
incorporation of more sophisticated features of power systems such as the

voltage, phase angle, reactive power, and security issues into the

interconnected power system.
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